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ABSTRACT

Folding of an RNA from secondary to tertiary structure often depends on divalent ions for efficient electrostatic charge
screening (nonspecific association) or binding (specific association). Tomeasure howdifferent divalent cations modify fold-
ing kinetics of the 60 nucleotide E. coli rRNA GTPase center, we combined stopped-flow fluorescence in the presence of
Mg2+, Ca2+, or Sr2+ together with time-resolved small angle X-ray scattering (SAXS) in the presence ofMg2+ to observe the
folding process. Immediately upon addition of each divalent ion, the RNA undergoes a transition from an extended state
with secondary structure to a more compact structure. Subsequently, specific divalent ions modulate populations of inter-
mediates in conformational ensembles along the folding pathwaywith transition times longer than 10msec. Rate constants
for the five folding transitions act on timescales from submillisecond to tens of seconds. The sensitivity of RNA tertiary
structure to divalent cation identity affects all but the fastest events in RNA folding, and allowed us to identify those states
that prefer Mg2+. The GTPase center RNA appears to have optimized its folding trajectory to specifically utilize this most
abundant intracellular divalent ion.
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INTRODUCTION

The 60 nucleotide (nt) GTPase center RNA (GAC) from 23S
rRNA (Fig. 1) must adopt an intricate tertiary structure to be
functional (Moazed et al. 1988; Xing and Draper 1996;
Holmberg and Noller 1999; Cameron et al. 2002; Helg-
strand et al. 2007; Harms et al. 2008; Gao et al. 2009; Voo-
rhees et al. 2010; Sprink et al. 2016). In the ribosome, the
GAC is bound by the prokaryotic L11 protein (L12 in eu-
karyotes); L11 binding requires that GAC adopt its tertiary
fold (Blyn et al. 2000). The GAC is also the binding site for
the peptide antibiotic thiostrepton (Blyn et al. 2000). GAC
nucleotides make specific transient contacts with essential
ribosome cofactors during translation (Harms et al. 2008),
such that E coli lacking the GAC is not viable. In vivo,
Mg2+ ions facilitate its transition from secondary structure
to tertiary fold (Fig. 1). Previous in vitro experiments
have measured its ion-dependent folding that identified
a chelated Mg2+ ion (Grilley et al. 2007; Leipply and Dra-
per 2011). GAC crystal structures, both free (courtesy of
G. Conn) and bound to L11 (Wimberly et al. 1999; Conn
et al. 2002), show two common sites of divalent ion associ-

ation (Fig. 1) that are thought to be essential for proper ter-
tiary structure formation. The critical importance of the
GAC to translation motivates efforts to understand how it
adopts its tertiary fold.

Tertiary structure in noncoding RNAs typically involves
noncanonical interactions between nucleobases, riboses,
and phosphates (Butcher and Pyle 2011). To date, such in-
teractions are virtually impossible to predict de novo, yet
they can be intricate (Tinoco and Bustamante 1999; Cruz
and Westhof 2009) and intrinsic to function (Mortimer
et al. 2014). As negatively charged polyelectrolytes, RNA
recruits high concentrations of cations (Misra and Draper
1998; Shiman and Draper 2000; Draper 2008, 2013;
Bowman et al. 2012) to screen its phosphates and this
charge screening allows RNAs to explore compact con-
formations which facilitate tertiary interactions (Denesyuk
and Thirumalai 2015). Some RNAs can chelate divalent
ions to stabilize specific conformations (Conn et al. 2002;
Leipply and Draper 2011). Mg2+ is the most common
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divalent cation used for RNA folding, as it can participate in
different interactions through its six coordinated waters as
well as direct coordination to phosphates.
Ion-inducedRNA folding ismediated bymultiple driving

forces (Lipfert et al. 2010, 2014). Many RNA molecules un-
dergo rapid compaction or “electrostatic collapse” after
mixing with cations of different valences and atomic char-
acter (Russell et al. 2000, 2002; Das et al. 2003; Chauhan
et al. 2005; Moghaddam et al. 2009; Roh et al. 2010). The
earliest folding events can be attributed to electrostatic re-
laxation, where nonspecific charge screening by cations re-
laxes single-stranded loop and bulge regions, which allows
for better conformational sampling (Bartley et al. 2003).
When slower foldingevents areobserved, theyare typically
attributed to specific ion binding (Gluick et al. 1997;
Swisher et al. 2002) or the satisfaction of a conformational
search (Pljevaljcic ́ et al. 2005). An early example of time-
resolved RNA folding used small angle X-ray scattering
(SAXS) to probe the secondary-to-tertiary structure change
in the TetrahymenaGroup I intron (Russell et al. 2000). This
414 nt RNA has a modular secondary structure that was
found to collapse upon addition of divalent ions, then rear-
range itself into the correct tertiary fold. The Tetrahymena
Group I intron has been amodel system formany studies of

RNA folding, even though it forms
long-lived misfolded structures in
vitro. Mutations that prevent or exac-
erbate misfolding have provided in-
sights into how the RNA uses specific
sites during folding, and how ions
can modulate its tertiary interactions.

The GAC secondary structure is
known from phylogenetic compari-
sons that also identified eighteen
of its sixty nucleotides as invariant
among all organisms (Gutell et al.
1992b). Its tertiary structure alone
and in co-crystals with the L11 protein
and in the context of the ribosome
subunit (Gao et al. 2009) is preserved.
In vitro solution chemical probing of
secondary and tertiary structures of
prokaryotic GAC RNAs are consistent
with predictions and crystal struc-
tures (Leipply and Draper 2011). Bio-
chemical experiments focusing on
the E. coli GAC probed its sequence
dependence (Ryan and Draper 1991;
Lu and Draper 1994, 1995; Draper
and Xing 1995), ion dependence
(Wang et al. 1993; Bukhman and Dra-
per 1997; Leipply and Draper 2010),
and thermal stability (Shiman andDra-
per 2000; Draper et al. 2001; Leipply
et al. 2009), creating a compendium

of data on its physico-chemical properties. In E. coli GAC,
a single substitution, U1061A, destabilizes the tertiary
structure in monovalent ions, and effectively results in a re-
quirement for divalent ions (Mg2+) to adopt a stable tertiary
structure (Lu and Draper 1994). Its Mg2+ requirement al-
lows us to examine how this essential RNA element uses
divalent ions to adopt its structure.
We are exploring the kinetic trajectory of the ion-in-

duced conformational change from secondary structure
to tertiary fold (Rau et al. 2015; Welty and Hall 2016). We
replaced six adenosine nucleobases that crystal structures
showedwere not involved in hydrogen bonding (Wimberly
et al. 1999; Conn et al. 2002) with the fluorescent base 2-
aminopurine (Fig. 1). Stopped-flow fluorescence investiga-
tions of Mg2+-induced folding revealed multiple states
along the GAC folding trajectory (Fig. 1; Welty and Hall
2016).
Now, we have examined GAC folding kinetics in the

presence of Ca2+ and Sr2+. An earlier study of the GAC
stability in the presence of Ca2+, Sr2+, and Mg2+ identified
two binding sites with differential affinities for these ions
(Bukhman and Draper 1997) that could affect the states
along the kinetic trajectory we proposed (Welty and Hall
2016). Additionally, time-resolved and steady-state SAXS

A

C

B

FIGURE 1. GAC structures and kinetic folding scheme. (A) Tertiary structure of E. coli GAC,
with U1061A substitution (Conn et al. 2002). Divalent ion positions from a superposition of
GAC crystal structures (pdb 1hc8, 1mms, 5d8h, 5dar, 4v8p, 4v4q); RNA is 1hc8. (B) Secondary
structure from phylogenetic comparisons (Petrov et al. 2014). 2AP positions are labeled in
blue. (C ) Our model of the divalent ion-mediated (Me2+) kinetic trajectory of tertiary folding
(Welty and Hall 2016).
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experiments allow us to connect structural insights of con-
formational ensembles to the mechanistic folding model.
Time-resolved SAXS data show a rapid compaction of
theGACwithin 10msec afterMg2+ addition as seen in oth-
er small RNA molecules (Russell et al. 2002; Das et al.
2003; Perez-Salas et al. 2004; Takamoto et al. 2004;
Plumridge et al. 2018). Our new results show that initial
GAC contacts with divalent ions are electrostatic, but sub-
sequent GAC/divalent ion interactions are ion-specific.
The three divalent ions lead to biased subpopulations in
the dynamic equilibria of GAC structures within states
along folding routes, and reveal how Mg2+ ions have a
unique role in folding of the GAC.

RESULTS

Divalent ion titrations

UV absorbance and steady state SAXS

For all our experiments, we use a variant of E. coli GAC
containing the U1061A substitution. Position 1061 is not
conserved in GAC sequences; most eukaryotic GAC’s
have G1061, and some archaea have A1061 (Gutell et
al. 1992a). In the background of the E. coli sequence,
A1061 destabilizes any tertiary structure that might form
in the absence of divalent ions, but has increased stability
in the presence of Mg2+ (Lu and Draper 1994). Sites of 2AP
substitution were selected fromphylogenetic comparisons
and crystal structures: sites A1067, A1069, and A1061 are
not conserved and do not contribute hydrogen bonds to
the tertiary fold; A1070 and A1095 are invariant, but do
not make tertiary contacts (A1095 contacts cofactors).
We assessed secondary and tertiary structure stability for
all 2AP constructs by thermal denaturation in UV absor-

bance measurements, as established by the Draper lab
(Ryan and Draper 1991).

To evaluate the role of ions on folding, we compared the
change in absorbance and the change in SAXS properties
of the GAC during titrations with MgCl2, CaCl2, and SrCl2.
Ca2+, Sr2+, and Mg2+ are alkaline earth metal cations that
differ in their hydrated radii (4.14, 4.14, 4.28 Å, respective-
ly [Conway 1981]). All have closed-shell electron orbitals,
and all are associated with at least six water molecules in
solution. Previous studies (Bukhman and Draper 1997) of
E. coliGACU1061G stability in 1.6MNH4Cl upon addition
of Ca2+, Sr2+, Ba2+, or Mg2+, identified two ion binding
sites: One site bound tighter to ions with a smaller ionic
radius (Mg2+>Ca2+>Sr2+); the second site preference
was ordered Mg2+>Ba2+>Sr2+ >Ca2+. Now, we work in
a background of 100 mM KCl (K+ is more effective than
Na+ at stabilizing GAC structure [Lu and Draper 1994]) to
measure the effects of Ca2+ and Sr2+ on the kinetics of
GAC folding.

First in steady-state experiments, we find that all three
divalent cations drive GAC tertiary structure formation,
but they are not equivalent. The change in UV absorption
upon titration with the ions reveals a progressive decrease
in absorbance at 260 nm (Fig. 2A) as the GAC adopts its
tertiary structure. We attribute the loss of absorbance to
an increase in base stacking and corresponding hypochro-
micity (Grilley et al. 2007). Mg2+ drives the transition to the
tertiary structure at lower concentrations than either Ca2+

or Sr2+. Significantly, the final value of absorbance change
is not identical, suggesting that the final folded states of
the GAC differ with divalent ion.

Analogous steady-state SAXS measurements provide
another measure of the folded tertiary state of the GAC.
Titrations of the GAC with each divalent ion show a dra-
matic difference in the calculated radius of gyration (Rg)

A B C

FIGURE2. GAC tertiary structure ensemble is controlled by divalent ion identity. (A) Percent absorbance change at 260 nmof theGACRNAupon
titration with divalent ions. [GAC]= 2 µM; starting absorbance for each titration is the same within error. Data corrected for dilution with higher
concentrations of ions. (B) Calculated Rg from steady-state SAXS measurements upon titration with divalent ions. (C ) Kratky profiles from SAXS
shows compaction from the extended states in KCl tomore compact states in 1mMdivalent ions. [GAC]= 30 µM. All solutions contained 100mM
KCl, 10 mM sodium cacodylate (absorbance) or MOPSO (SAXS), pH 6.5 at 22°C.
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of the RNA (Fig. 2B). SAXS profiles are shown as Kratky
plots, I × q2 versus q (Fig. 2C), to illustrate the evolution
of compaction from the extended state. GAC in K+ shows
a Kratky profile with a low peak and lightly sloping tail,
characteristic of extended states. The Kratky profile of a
more compact state shows a pronounced peak and a
sharper decaying tail at high q. At 1 mM divalent ion con-
centration, GAC in MgCl2 is more compact than in CaCl2,
which is more compact than in SrCl2. For GAC in 1 mM
MgCl2, Rg averaged over 12 measurements taken at 6
beam runs was 21.3 ±0.5 Å (20.2 Å–21.9 Å). (We note
that our SAXSmeasurements and Rg values for GAC follow
very stringent rules developed for analysis [Trewhella et al.
2017].) Please refer to the Supplemental Material for illus-
trative I versus q data and a Guinier fit for the GAC.)
Unfortunately, SAXS experiments were limited to a final
1 mM concentration of ions due to interparticle interfer-
ence effects at higher divalent ion concentrations. The
Rg trend follows the change in absorbance, supporting
the interpretation that the folded ensembles of the GAC
are not identical for the three ions.
In contrast, calculating Rg from the co-crystal structure

(PDB ID1HC8, after strippingoff the L11CTD) gives a value
of 17 Å using the program CRYSOL (Svergun et al. 1995).
This difference implies that crystallization may inhibit
some of the freedom of configurational motion in solution
that allows the GAC to sample alternate conformations.
Previously, Grilley et al. (2007) also used SAXS to com-

pare the envelopes of folded and unfolded GAC-
U1061A. In a solution of 40 mM K+ and 1 mM Mg2+ at
15°C, they calculated (with GNOM) Rg=18 Å, and without
Mg2+ Rg=23–25 Å (40–150 mM K+). The lower monova-
lent concentrations (40 mM KCl +Mg added) can lead to
repulsive interactions at SAXS concentrations of nucleic ac-
ids, which could be misconstrued as lower Rg (Pabit et al.
2009, 2013), accounting for the disagreement between
our values. In our experiments, we collected data at several
GAC concentrations in several salt conditions (please
see the Supplemental Material) to arrive at conditions
where the data were consistent. We also used in-line and
in-lab Size-Exclusion Chromatography (SEC) SAXS to
probe for micro-aggregates that would inflate the Rg val-
ues. Although our value of Rg=21.3 ±0.5 Å for GAC in
its tertiary fold is larger than the Grilley value, the trends
from extended to compacted volume in the presence of
Mg2+ are the same.

Fluorescence

For fluorescence experiments we utilized six individual
constructs in which one Adenosine was replaced with 2-
Aminopurine (2AP-GAC) (Dellinger et al. 2011). We have
previously shown by thermal denaturation that these sub-
stitutions do not significantly alter GAC stability (Rau
et al. 2015) (the GAC has a characteristic UV absorbance

profile upon thermal denaturation). 2AP fluorescence re-
ports local environmental changes (Jean and Hall 2001;
Rachofsky et al. 2001; Rist and Marino 2001; Hall and
Williams 2004; Sarkar et al. 2009), which in the GAC we
have found are sensitive to the conformational change
from secondary to tertiary structure (Welty and Hall 2016).
Ion titrations of each 2AP-GAC showed that tertiary folding
reaches equilibrium in Mg2+ and Ca2+ by 3 and 5 mM, re-
spectively, whereas 100mMSr2+ is required. A comparison
of the percent fluorescence change at each site in the pres-
ence of 5 mM and 100 mM Me2+ shows a consistent in-
crease or decrease of fluorescence (Fig. 3). We interpret
these data to indicate that local structural changes of the
GAC are similar for the three divalent ions, and that its ter-
tiary fold has formed.

Folding kinetics

Stopped-flow fluorescence

The time-trace of 2AP-GAC fluorescence for each 2AP site
after addition of each divalent ion is shown in Figure 4.
Concentrations of each added divalent ion were selected

A

B

FIGURE3. The RNA folds upon addition of divalent ions (Mg2+, Ca2+,
Sr2+). Titrations of 2AP-GAC fluorescence for (A) 2AP-1061 and
(B) 2AP-1070 are shown. Other sites are analogous.
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from titration experiments to ensure that saturation was
reached (all stopped-flow fluorescence traces at all ion
concentrations are shown in Supplemental Fig. 6A–C).
Note that the shape of the fluorescent time-trace from sev-
eral 2AP-GAC constructs varies with different divalent ions.
Transitions in the presence of Mg2+ appear later in the
timecourse, and the trace from 2AP-GAC 1061 is the
most idiosyncratic. All traces collected with the same diva-
lent ion at a given concentration were
globally fit to the sum of three expo-
nentials (Eq. 1),

y = y0 + A1e−t/t1 + A2e−t/t2

+ A3e−t/t3 (1)

which successfully reproduced the
data, with the exception of AP1089,
which has different transition times.
The amplitudes differ with each 2AP
site, but the rates are common to
each. The resulting observed rates
(kobs=1/τ) partition into three time-
scales: 1–20 msec, 20–200 msec,
and >200 msec (corresponding rates
1–50 sec−1, 0.1 to 4 sec−1, and 0.01

to 0.15 sec−1), which are plotted for
each ion in Figure 5.
This analysis reveals that GAC fold-

ing in Mg2+ is consistently different
than in either Ca2+ or Sr2+, revealing
new insight into the mechanism of its
ion-induced folding. The first transi-
tion with observed rate k1,obs is the
most rapid. As we previously noted
(Welty and Hall 2016), k1,obs for
Mg2+ addition decreased with in-
creased concentration of ion. This is
a signature of a rate-limiting kinetic
step that precedes a binding event
(Galletto et al. 2005; Vogt and Di
Cera 2012). For the GAC interaction
with Mg2+, that kinetic step corre-
sponds to conformational changes of
the RNA that occur before Mg2+

binds. In contrast, k1,obs in the pres-
ence of Ca2+ and Sr2+ increasewith in-
creasing ion concentrations, which is
also consistent with an induced-fit
mechanism (in the limit of rapid equi-
librium); while perhaps not intuitively
obvious, the analytical relationship
has been demonstrated (Vogt and Di
Cera 2012). In the induced-fit mecha-
nism, Ca2+ and Sr2+ would associate
with the GAC and “force it” to adopt

a conformation. Both signatures are examples of
conformational selection (Vogt and Di Cera 2013; Chakra-
borty and Di Cera 2017), but the mechanisms are distinct.

Observed rates of subsequent GAC folding transitions
(k2,obs and k3,obs) are consistently slower in the presence
of Mg2+, and are sensitive to the specific ion. We can
interpret these data in terms of conformational ensembles:
Mg2+ reduces ratesof conformational sampling,whileCa2+

A D

B E

C F

FIGURE 4. GAC tertiary folding kinetics. (A–C ) Traces from stopped-flow fluorescence exper-
iments show each 2AP-GAC RNA response to addition of each divalent ion at [Me2+] = 20 mM
(top:Mg2+,middle: Ca2+; lowerSr2). 1061, blue; 1067,green; 1069, lavender; 1070, yellow; and
1095,gray.Eachdata trace is superimposedwith its global fit fromEquation1. Traceshavebeen
offset to an ending value of 1 A.U. for comparison. (D–F ) Traces replotted to show the rapid (∼1
msec) 2AP fluorescence changes upon addition of divalent ions. Traces have been normalized
to percent fluorescence change, with the starting value (without Me2+) equal to 100%.

FIGURE 5. Global observed rates calculated from exponential fitting to Equation 1 as a func-
tion of divalent ion concentration (1/τn = kn,obs, n=1,2,3). k1,obs (left) is themost rapid observed
rate; k2,obs (middle) corresponds to the transition with the largest amplitude; k3,obs (right) is the
slowest rate. Mg2+, ▪; Ca2+, X; and Sr2+, Δ.
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and Sr2+ allow more rapid sampling possibly due to weak-
er association. As a consequence, different ions preferen-
tially stabilize different conformations in the ensembles.

Time-resolved SAXS

In our time-resolved fluorescence experiments, GAC in
100 mM KCl without divalent ion is mixed with a solution
of MgCl2, CaCl2 or SrCl2 in 100 mM KCl at various concen-
trations. The dead time of the mixer is ∼1 msec, so events
that occur more rapidly cannot be directly observed.
However, at the first detectable timepoint (∼1 msec), we
observe that all 2AP-GAC fluorescence intensities have
changed from their starting values in KCl (when the GAC
has only secondary structure). In Figure 4D–F, that starting
fluorescence value is designated as 100%. Dotted lines in-
dicate the jump of fluorescence intensity uponmixing with
divalent ion solution. The trend at each site is independent
of the specific divalent ion, although its amplitude is ion
concentration-dependent.
We previously proposed that the rapid event in the fluo-

rescence experimentswas due to a rapid initial global com-
paction of the GAC upon Mg2+ addition (Welty and Hall
2016). Now, we use time-resolved SAXS to measure the
scattering properties of the GAC during Mg2+-induced
folding. (Similar experiments in the TR-SAXS flowcell with
CaCl2 yielded unusable results caused by interparticle as-
sociation, and the required Sr2+ concentration is too high
for the apparatus.) Time points (0.01, 0.03, 0.05, 0.1, 0.3,
and 1 sec) corresponded to analogous fluorescence mea-
surements. Rg was calculated at each timepoint (Fig. 6A)
from Guinier analysis; representative Kratky profiles are
shown (Fig. 6B). TR-SAXS data show that the RNA forms a
more compact state within 10 msec of the addition of diva-
lent ions. Kratky profiles continue to evolve up to 1 sec ap-
proaching the final state (t=∞) at Rg of∼22 Å, comparable
to the steady-state valueof 21.3± 0.5Å in 1mMMgCl2.We
conclude that indeed the fluorescence change that occurs
in<1msec in our stopped-flow fluorescenceexperiments is
due to a global compaction of the GAC.

Numerical modeling of folding kinetics

The initial interaction of the GAC with divalent ions (<1
msec) is not described by Eq. 1. This in part led to our
working model (Welty and Hall 2016) of the folding kinet-
ics in the presence of Mg2+ that included six states (Fig. 1).
In our model, the secondary structure (2°) transitions to in-
termediates I1 and I2 upon addition of divalent ion in <1
msec. Association of a single stoichiometric ion leads
to I3, which then samples conformations to result in a final
ensemble that includes I3, I4, and the tertiary fold (3°).
More complex kinetic mechanisms, both nonlinear and
those with additional states, were unable to better fit
the data.
Now, with three divalent ions, Mg2+, Ca2+, and Sr2+, we

describe all states along the folding trajectory analyzed by
metaheuristic optimization algorithms (Hastie et al. 2009)
to determine any similarities in their kinetic mechanisms
(see Supplemental Material). While our kinetic scheme de-
scribes GAC folding in the presence of all three divalent
ions, the analysis notably reveals that ion interactions
with the RNA result in different rate constants and equilib-
rium populations (Table 1; Fig. 7).
The first GAC transition (<1 msec) is not divalent ion-

specific (K1; k1, k−1 are identical), suggesting that the
ions are there to neutralize phosphate charges and allow
a close approach of chains. Significantly, rate constants
k−4 and k−5 for Mg2+ are uniquely slow. These slow reverse
rates effectively drive the GAC forward to its final confor-
mation (3o in Fig. 1), as they limit its backward sampling
of previous states. In contrast, the rate constants k−4 and
k−5 in Ca2+ and Sr2+ are equal to or more rapid than their
respective forward rates, and as a consequence, the final
state of the GAC in these divalents will contain substantial
populations of I3, I4, and 3° ( Fig. 1). The critical ion prop-
erty that alters these rate constants cannot be ascertained
from our experiments. Ion charge density, hydrated radius,
number of associated waters, polarizability, or ease of
dehydration may all contribute. Curiously, the rate con-
stants could reflect the difference in ion binding affinity

A B

FIGURE 6. The GAC has a rapid response to addition of divalent ions. (A) TR-SAXS continuous mixer allows us to follow the change in Rg of the
GAC as a function of time in the presence of Mg2+. (B) Kratky plots for t=0, t=30 msec, t=300 msec, t= steady state along the trajectory.
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of these three divalent ions (Bukhman and Draper 1997)
[site one affinity: (Mg2+>Ca2+>Sr2+); site two affinity:
(Mg2+>Sr2+>Ca2+)] noted in equilibrium binding experi-
ments with the GAC.

Here wemust introduce a caveat regarding the interpre-
tation of intermediates in the kinetic model of GAC folding
(Fig. 8). Classically, these intermediates have been associ-
ated with specific structures that undergo conformational
changes along a path. As articulated by Dill and Chan, in
their perspective on protein folding (Dill and Chan 1997),
these intermediates are in fact ensembles of conforma-
tions. Distributions of conformations can be broad, and
conformations are not restricted to a particular intermedi-
ate state. The concept of a rugged folding funnel seems
made for descriptions of RNA folding: GAC folding has a
“bumpy landscape” with its corresponding multiple state
kinetics.

DISCUSSION

There is not a single tertiary structure of the GAC RNA.
Instead, there is an ensemble that is best modeled as a dy-
namic equilibrium of folded states (I3, I4, and 3°). Indeed,
previous work has shown that sequence variants of the
GAC exhibit different stabilities under thermal denaturing
conditions depending on the associated divalent ion
(Bukhman and Draper 1997). This suggests two possible
hypotheses: First, that the RNA has unique conformational

states for each ion; Second, that the RNA accesses the
same folded states but in different ion-specific propor-
tions. Because our data sets from each ion can all be mod-
eled by the same kinetic mechanism, we propose that
there is ion-specific stabilization of different states within
a common ensemble.

Other studies of RNA folding have arrived at similar
conclusions. For example, observation of the flux of inter-
mediates in the ion-dependent folding pathway of the
Tetrahymena Group I intron RNA, and dynamic equilibria
of RNAs observed using single molecule experiments
(Heilman-Miller et al. 2001; McDowell et al. 2010; Wan
et al. 2010; Suddala et al. 2015) are consistent with our sec-
ond hypothesis. Specifically, Tetrahymena Group I intron
was shown to undergo electrostatic collapse, also referred
to as electrostatic relaxation or compaction, as the first re-
sponse to divalent ions (Russell et al. 2000, 2002; Das et al.
2003). Previous studies have used equilibrium ion titrations
to measure RNA tertiary folding, the more sophisticated of
which typically invoke either cooperative folding mecha-
nisms (Fang et al. 2002; Behrouzi et al. 2012; Strulson
et al. 2014) or the partial ion interaction coefficient frame-
work (Record et al. 1978). The assumptions and complica-
tions of these approaches have been discussed by Lipfert
et al. (2010, 2014). If an RNA tertiary structure is composed
of multiple states in a dynamic equilibrium with similar
spectroscopic signals, then standard binding density func-
tions will not accurately describe the ion associations. Our

TABLE 1. Rate constants along the GAC folding trajectory

k1 (sec-M)−1 k−1 sec
−1 k2 sec

−1 k−2 sec
−1 k3 (sec-M)−1 k−3 sec

−1 k4 sec
−1 k−4 sec

−1 k5 sec
−1 k−5 sec

−1

Mg2+ 130 2470 45 10 21 23.7 1.1 0.02 0.044 0.0017

Ca2+ 130 2470 36 12 26 28.1 1.8 2.0 0.028 0.097
Sr2+ 130 2470 23 9.6 42 20.2 0.84 2.0 0.0062 0.059

Rate constants (sec−1) calculated from global fitting of rate equations. kn is a forward rate constant; k−n is the reverse rate constant.

A B

FIGURE 7. Apparent equilibrium constants (Kn) and calculated rate constants (kn) for GAC tertiary folding. ∗K1 and ∗K3 reflect bimolecular inter-
actions between RNA and ions (s−1mM−1). kn is forward rate constant; k−n is reverse rate constant. (∗∗) Upper limit values. Slower rates do not
change the quality of fit.
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kinetics experiments reveal the presence of ion-depen-
dent transitions that equilibrium experiments cannot see.
Dissecting RNA tertiary folding trajectories can prove

challenging and has only been attempted for a few RNA
molecules (Deras et al. 2000; Ralston et al. 2000; Keller
et al. 2014). The difficulty arises in trying to define often
short-lived intermediates that are very difficult to identify
and quantify. Previous attempts have utilized a range of
time-resolved techniques such as footprinting (Sclavi et
al. 1998; Silverman et al. 2000; Shcherbakova et al. 2004),
scattering (both X-ray and neutron) (Russell et al. 2000;
Das et al. 2003; Perez-Salas et al. 2004; Moghaddam
et al. 2009; Roh et al. 2010; Pollack 2011), as well as fluores-
cence (Chauhan et al. 2009; Haller et al. 2011; Buskiewicz
and Burke 2012; St-Pierre et al. 2014; Frener and Micura
2016). Our experiments directly observe continuous
changes in the orientations and stacking of the 2AP nucle-
obases (local events) as well as changes in the global
conformational ensemble observed via SAXS during the
transition from secondary structure to tertiary folds.
Separating the effects of nonspecific ion association and

specific ion binding to nucleic acids is a complex and
nontrivial problem. In the context of equilibrium RNA fold-
ing the energetic contributions of nonspecific association
and binding are linked, and not independently measur-
able. Examining the kinetics of folding can help disentan-
gle both effects by attempting to discover discrete binding
events. Discrete binding events behave according to mass
action laws, however nonspecific interactions, such as
counterions with polyelectrolytes, do not (Wyman and
Gill 1990). It is possible that there are nonspecific ion asso-
ciation effects that mimic stoichiometric binding to the
GAC; however, this is unlikely due to the consistency of
the model when accounting for three different cations at
varying concentrations.
The identity of the ion alters both uni-molecular reac-

tions (conformational changes) and bi-molecular reactions
(discrete ion binding). The model in Figure 1 has two ion
binding/unbinding steps; if the nature of nonspecific inter-
actions were identical across all three cations, then only

these rate constants would change.
However, all rate constants, aside
from k1/k−1, are modulated differently
by each cation. These findings further
support the hypothesis that the GAC
“binds” each of these ions, although
it does so with different affinities.
Binding could be chelation, hydrogen
bonding, and/or polarization; the dif-
ferences could account for affinities
and rate constants. Our data indicate
that folding rates and equilibrium
populations of RNA can be tuned by
ion identity.

In cells, the GACwill be surrounded
by K+ and Mg2+ ions, both of which are preferred for its
folding. Because it is a small autonomous structural ele-
ment, it can adopt its secondary structure as it is being
transcribed. After its final stem has formed, it can fold
into its tertiary structure, and the folding trajectory that
we describe here is a plausible model. In prokaryotes,
the L11 protein could be present; L11 can bind to the
GAC before it folds, and might be thought of as a (nones-
sential) chaperone.

MATERIALS AND METHODS

All GAC RNAs containing a single site 2-aminopurine were
chemically synthesized by Agilent (Dellinger et al. 2011). GAC
molecules were also transcribed using T7 RNA polymerase by
run-off transcription (Milligan et al. 1987). All RNAs were purified
by denaturing gel electrophoresis and dialyzed against 0.2 M
EDTA, then against deionized distilled water. Solutions were ly-
ophilized to concentrate the RNA, whichwas stored at−20°C until
needed. To fold GAC into its secondary structure in buffer (no
divalent ions), solutions were heated at 65° for 30 min and cooled
to room temperature on the bench top (Leipply andDraper 2011).
All experiments were performed in a buffer background of 10mM
sodium cacodylate and 100 mM KCl at pH 6.5. All stock solutions
were passed through 0.45 µm cellulose nitrate filters and stored in
the plastic reservoir (Nalgene).
Equilibrium fluorescencemeasurements were collected at 2 µM

2AP-RNA on a Photon Technology International spectrofluoro-
meter at 20± 0.1°C. Samples were excited at 305 nm, and
emission was measured at 368 nm wavelength. Absorption mea-
surements were taken on a Cary 100Bio absorption spectropho-
tometer. Stopped-flow measurements were made on an
Applied Photophysics SX-20 stopped-flow spectrometer 20±
0.1°C. RNA concentration for stopped-flow fluorescence was
100 nM (final), and for absorbance, 2 µM. Stopped-flow data
were averaged and normalized with MATLAB (MathWorks), and
globally fit using the originPRO (OriginLab Corp) software pack-
age. The basis for application of genetic algorithms to determine
rate constants is detailed in the Supplemental Material.
All RNAs used in SAXS experiments were transcribed with T7

RNA polymerase (Milligan et al. 1987). Buffer conditions for
SAXS experiments were 10 mM MOPSO, 100 mM KCl, pH 6.5.

FIGURE 8. A conceptual model of GAC folding. From left: Starting from the secondary struc-
ture (State 1), an ensemble of conformations is present upon addition of divalent ions (States 2
and 3); a stoichiometric Me2+ ion can bind to some structures, leading to formation of tertiary
interactions (including base triples) that staple the hairpins together; the three-way junction is
collapsed to form a triloop (States 4,5,6). Blue stars correspond to two sites in crystal structures
where divalent ions are located.
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Divalent ions were added to the RNA immediately prior to the
SAXS measurements or mixed within the flow cell for the time-re-
solved SAXS (TR-SAXS) measurements. For static SAXS measure-
ments, RNA concentrations were 30 and 60 µM and for TR-SAXS,
75–100 µM GAC.

All SAXS data were collected at the Cornell High Energy
Synchrotron Source (CHESS). Steady state SAXS measurements
were made using the BioSAXS setup at the G1 beamline (Supple-
mental Fig. S1) with x-ray energy of 9.924 keV and a beam size of
250 µm2. Liquid samples were loaded in a 1.5 mmquartz capillary
and the samples were oscillated to avoid radiation damage. Mea-
surements weremade using the Pilatus 100K detector over 20 sec
with a 1 sec integration time. Time resolved SAXS (TR-SAXS) mea-
surements were collected at the same G1 beamline with a home-
built continuous flow mixer setup (Supplemental Fig. S4) using
11.18 keV x-rays that passed through a 50 µm scatterless pinhole.
In the continuous-flow mixer setup, GAC in buffer and 100 mM
KCl flows in the inner channel, and buffer with 20 mM MgCl2
and 100mMKCl flows in the outer channel. Mixing was facilitated
by coaxial diffusion of Mg2+ ions into the sample as described
previously (Pabit and Hagen 2002; Calvey et al. 2016; Plumridge
et al. 2018). To collect TR-SAXS images, the flow cell was moved
with respect to the x-ray beam to coincide with a particular mixing
time point (Supplemental Table S1). Buffer background profiles
were collected by turning off the sample flow. TR-SAXS experi-
ments used an Eiger 1 M detector. All SAXS data were processed
using BioXTAS RAW (Hopkins et al. 2017) and in-house MATLAB
scripts. The reported radii of gyrations (Rg) were calculated from a
Guinier Analysis (Supplemental Fig. S3), and the Kratky profiles,
plots of I × q2 versus q, are shown to emphasize shape changes
in the high-q region. More information on the SAXS experiments
and the TR-SAXS flow cell are in the Supplemental Material.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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