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Small-angle X-ray scattering measurements can provide valuable information about the solvent envi-
ronment around biomolecules, but it can be difficult to extract solvent-specific information from
observed intensity profiles. Intensities are proportional to the square of scattering amplitudes, which
are complex quantities. Amplitudes in the forward direction are real, and the contribution from a
solute of known structure (and from the waters it excludes) can be estimated from theory; hence, the
amplitude arising from the solvent environment can be computed by difference. We have found that
this “square root subtraction scheme” can be extended to non-zero q values, out to 0.1 Å−1 for the
systems considered here, since the phases arising from the solute and from the water environment are
nearly identical in this angle range. This allows us to extract aspects of the water and ion distributions
(beyond their total numbers), by combining experimental data for the complete system with calcula-
tions for the solutes. We use this approach to test molecular dynamics and integral-equation (3D-RISM
(three-dimensional reference interaction site model)) models for solvent structure around myoglobin,
lysozyme, and a 25 base-pair duplex DNA. Comparisons can be made both in Fourier space and in
terms of the distribution of interatomic distances in real space. Generally, computed solvent distribu-
tions arising from the MD simulations fit experimental data better than those from 3D-RISM, even
though the total small-angle X-ray scattering patterns are very similar; this illustrates the potential
power of this sort of analysis to guide the development of computational models. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4953037]

I. INTRODUCTION

Ions and water molecules have been long known to
play crucial roles in governing biomolecule stability and
function.1–7 Elucidating how ions and water molecules
distribute themselves around the solutes can provide valuable
insights into their function and can also provide experimental
tests for theoretical predictions.4–6,8–10 However, there are
few experimental methods that directly probe the positions
of ions and water molecules in the solution. Ion counting
via dialysis can provide a quantitative measure of the ionic
atmosphere around the solute, but it provides only a total
(excess) number, and not any information the shape of the
ion cloud.11,12 The q = 0 limit of small-angle X-ray scattering
(SAXS) can provide similar excess counts for both water and
ions.13 Anomalous small angle X-ray scattering (ASAXS)
data in principle yield additional information about the
extent of perturbations of the ion/water environment,14–17

but the ASAXS signal is known to be intertwined with all
components in the system, complicating the analysis.13,18

Efforts to extract the contribution from ions to ASAXS
profiles date back to 2003 with the work of Ballauff and
coworkers.15,19 Using multiple energy ASAXS, they were
able to decompose the total scattering intensity into solute-ion
and ion-ion contributions, though limited to spherical solutes.
Recently, Meisburger et al. proposed a similar approach to
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separate information about the ion contribution around a DNA
duplex, using the heavy ion replacement SAXS rather than
ASAXS profiles.20 Both approaches, nonetheless, only show
the solute-ion and ion-ion correlations in reciprocal space and
are not readily extended to the water distribution.

In this paper, we propose a new method of analysis
to extract both water and ion distributions from SAXS
profiles provided the scattering intensities are calibrated on the
absolute scale. Both the excess number (as in ASAXS and ion-
counting experiments12,16) and (low-resolution) information
about the actual distribution can be obtained for ions and
water molecules. The correlation between solute-ion and
solute-water can be displayed in both reciprocal space (as
partial intensities) and real space (as interatomic distribution
functions). Since the focus is on ions and water, the proposed
analysis requires knowledge about the biomolecule structure
in advance. Although the proposed method is approximate,
we use theoretical models to demonstrate that the errors are
rather small for q between 0 and 0.1 Å−1. The resulting ion
and water distributions are then used to test predictions from
integral equation theory21–25 and explicit MD simulation for
relatively rigid proteins and a DNA duplex.

II. THEORY AND BACKGROUND

A. Calculation of SAXS profiles

Here we briefly discuss the procedure of calculat-
ing SAXS profiles from MD simulation and 3D-RISM
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(three-dimensional reference interaction site model), which
has been described in more detail elsewhere.13,26–31 (A brief
summary of 3D-RISM theory is given in Section V B.)
X-ray scattering experiments on biomolecules compare the
scattering intensity from the sample of interest to a “blank”
with just solvent present, and report the difference, or “excess”
intensity,

I (q) = |A (q)|2
t
−

|B (q)|2
t
, (1)

where the ⟨⟩t bracket indicates that the intensities are averaged
over the measurement time and volume. A (q) and B (q) are
Fourier transforms of the scattering amplitudes for the sample
and blank, respectively,|A (q)|2 =  


Ã (r) Ã (r′)� e−iq.(r−r′)drdr′, (2)

where Ã (r) is the electron density in the system. It has been
shown that the total intensity can be approximately (though
usefully) rewritten as13,26,29

I (q) = [⟨A1 (q)⟩ − ⟨B1 (q)⟩]2
+

|A1 (q)|2

− |⟨A1 (q)⟩|2



−
|B1 (q)|2


− |⟨B1 (q)⟩|2


, (3)

where A1 (q) and B1 (q) are Fourier transforms for the sample
and blank, respectively, but here only considering regions
where there is excess/deficit electron density relative to the
bulk value. In 3D-RISM, the second and third terms vanish,13

leading to

I (q) = [⟨A1 (q)⟩ − ⟨B1 (q)⟩]2. (4)

The approximation made in going from Eqs. (3) to (4) has
been shown to be valid up to q = 1.5 Å−1.13 Finally, the
angular averaging is performed to obtain the total intensity,

I (q) = 1
4π


I (q) dΩ. (5)

The total excess amplitude can be expressed as the sum
of terms arising from the solute (biomolecule) and the solvent,

A1 (q) − B1 (q) ≡ F (q) = Fsolu (q) + Fsolv (q) . (6)

The separation between Fsolu and Fsolv can be made in different
ways and is primarily for convenience in interpreting results.
Here we have chosen to include in the Fsolu term the scattering
from the excess electron density in the region of space
occupied by the solute,

Fsolu(q) =

j

f j (q) exp
�
−Bjq2/16π2� e−iq.rj

+


exclV

fk (q) e−iq.rkdrk. (7)

The first term on the right-hand-side represents the scattering
from the solute atoms, where f j (q) is the atomic scattering
factor and Bj is the B-factor of atom j. The second term gives
the contribution from the (negative) excess solvent density
in the volume occupied by the solute; as in earlier work,13,32

we use a “cube method” to compute the scattering from a

three-dimensional voxel, so that

fk (q) = 8

sin

( qxa
2

)
sin

(
qyb
2

)
sin

( qzc
2

)
/(qxqyqz)



× ρxe (rk) , (8)

where ρxe (rk) is the excess electron density arising from the
solvent; a, b, and c are the grid length, width, and height,
respectively, and the integral only goes over all points within
the excluded volume of the solute.

With this definition, Fsolu(q) is then the scattering
amplitude of a hypothetical system where the solute displaces
waters inside its volume, but does not affect the water
molecules and ions around it. The details of how to determine
the solute excluded volume, and the choice to include the
“excluded” waters in Fsolu, are somewhat arbitrary. Here, the
excluded volume is computed based on the algorithm of Voss
and Gerstein for the 3D grid with the a probe radius of
1.4 Å.33 Points lying inside this volume are assigned to the
excluded volume. A key advantage of Eq. (7) is that it is
readily calculated for a solute of known structure: the atomic
positions and scattering factors are known, and the excess
solvent density inside the molecule is just the negative of
the bulk solvent density. The “interesting” parts of solvation,
i.e., how the solvent in the vicinity of the solute is perturbed,
are included in Fsolv(q). The key point of this paper, given
in Sec. II B, is to show how Fsolv(q) can be extracted from
experimental data.

B. Extracting water and ion distributions from SAXS
and anomalous SAXS

We can further divide the solvent scattering into excess
terms arising from water and from ions,

F (q) = Fsolu (q) + Fhyd (q) + Fion (q) . (9)

As above, the solvent terms come from scattering outside the
biomolecule,

Fhyd (q) + Fion (q) =


not−exclV
fk (q) e−iq.rkdrk. (10)

Since fk (q) is proportional to the excess electron density
ρxe (rk), we can further decompose the solvation shells into
contributions of hydration water and ions by considering
excess electron density coming from only water or ions
ρxe (rk) = ρ

(wat)
xe (rk) + ρ

(ion)
xe (rk). Note that this particular

decomposition reflects our interest in studying the waters
of hydration and ions around the solute. In principle, any
decomposition scheme should work.

Now, as the total intensity is

I (q) = 1
4π


|F (q)|2dΩ, (11)

we define, similarly, the partial intensity for each component
i (where i = solu, hyd, counterion, or co-ion),

Ii (q) = 1
4π


|Fi (q)|2dΩ. (12)

The square root of the partial intensity will be called
F̃i (q), by definition a real quantity. At q = 0, it is nothing
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but the number of excess electrons from component k,
i.e., F̃i (0) = NiZi, where Ni is the excess number of
component i coming from the hydration shell, and Z is
the number of electrons of component i. Thus we always have
F̃ (0) = 

i F̃i (0), or 
I (0) =


i

NiZi, (13)

and we can extract the number excess of particle Ni from
I (0), as shown earlier.13 At non-zero q, Fi (q) is generally
complex, but we expect that there should be a small range at
low angles where one can still decompose the total into partial
amplitudes,

F̃ (q) ≃

i

F̃i (q) . (14)

For the above equality to be true, the phases of Fk (q)
should be identical (or at least very close to each other) at
all small angles. The phase difference α between Fsolu (q) and
Fhyd (q) is, by definition,

Fsolu (q) Fhyd (q) = |Fsolu (q)| �Fhyd (q)� cos α. (15)

Since F̃ (q) depends on all possible orientations of the q vector
(with the same magnitude q), the approximation in Eq. (14)
holds if and only if cos α is very close to 1 (α ≈ 0) for every
q. As we show below, this condition is valid for q less than
about 0.1 Å−1. It is not a priori obvious that we can capture
enough information from such a narrow region to reconstruct
useful real-space distance distributions. We show below that
the approximate pair distance distribution functions (PDDFs)
extracted in this way from simulated data recapitulate the
original PDDFs, and that comparisons to experimental data
can be used to discriminate among various theoretical models
for the solvent distribution. Comparisons between theory and
experiment made using Eq. (14) are easier to interpret than
are comparisons of just the total scattered intensity.

1. Solvent is pure water

For systems with only the solute in pure water, the third
term in Eq. (9) vanishes; therefore, we can extract directly
F̃hyd (q) from SAXS,

F̃hyd (q) =


I (q) − F̃solu (q) , (16)

where F̃solu (q) =


Isolu (q), which can be computed from
the (known) structure of the solute. To describe how those
water molecules distribute around the solute, we seek an
approximation of the cross-term solute-hyd which is the
correlation between the hydration water density and the solute.
From Eq. (11),

I (q) = 1
4π

 �
Fsolu (q) + Fhyd (q)�2dΩ

=
1

4π


|Fsolu (q)|2dΩ +

1
4π

 �
Fhyd (q)�2dΩ

+
1

4π

 
Fsolu (q) F∗hyd (q) + F∗solu (q) Fhyd (q)


dΩ.

(17)

The first two terms are F̃2
solu (q) and F̃2

hyd (q) (as defined in
Eq. (12)), respectively; therefore, we can approximate the
cross-term (the third term) as

2F̃solu (q) F̃hyd (q) = I (q) − F̃2
solu (q) − F̃2

hyd (q) . (18)

As before, we can compute F̃solu (q) from the structure of the
biomolecule, F̃hyd (q) from Eq. (16), and get the cross-term
from Eq. (18). Examples of how this analysis is used are given
in Section III.

2. Solvent contains ions and water

In this case, one has more than one unknown (from hyd,
counterion (“ion”), and co-ion) in Eq. (9), and additional
measurements or assumptions are required to carry out the
decomposition. Changing the energy of the incident beam in
an anomalous SAXS (ASAXS) experiment is one approach,
varying the atomic scattering factor of a given ion.14–16,18,34,35

Another approach uses heavy ion replacement, assuming the
ion and water distributions are similar for the same type
of ions (alkalies, for example).14,20 By doing this, only F̃ion

is allowed to vary while the co-ion and hydration terms are
fixed. Subtracting the square roots of two measured intensities,
therefore, gives the contribution from the counterion only,

F̃ (q) − F̃ ′ (q) = F̃ion (q) − F̃ ′ion (q)
= Nion

�
Zion − Z ′ion

�
f̃ ion (q) (19)

with Z and Z ′ are the atomic scattering factors (q = 0) at two
different energy beams, f̃ is the normalized F̃ ( f̃ (0) = 1).
This can be scaled up to compute back the “full” term

F̃ion (q) = NionZion f̃ ion (q) = Zion

Zion − Z ′ion

�
F̃ (q) − F̃ ′ (q)� .

(20)

[Note that this F̃ion (q) includes contributions from those inside
the intrinsic (or geometric) volume of the solute (since “inside”
the solute there is a deficit density of the ion) and those coming
from the ionic cloud (“outside” term). We consider that the
“inside” contribution is small enough so that the “outside”
term (which we are interested in) can be approximated by the
total F̃ion (q). For example, if the intrinsic volume of the DNA
in this work is around 20 000 Å3, then the deficit number of
excluded-volume Na+ is ∼1 (with the bulk concentration of
0.1M). Considering the total excess number of Na+ is ∼37,
then the contribution of excluded volume term is less than
3%.] Rewriting Eq. (14), we have

F̃hyd (q) + F̃co−ion (q) = F̃ (q) − F̃solu (q) − F̃ion (q) . (21)

The co-ion contribution in principle could be accurately
subtracted from F̃hyd (q) but only at q = 0, since we only know
its excess number from electroneutrality: if the total charge of
the solute is Z , and the number of excess counterions Nion can
be computed as F̃ion (0) /Zion, the number of excess co-ions
must be Nco−ion = Nion − Z . However, there is currently no
way to obtain the co-ion spatial distribution from experiment.
ASAXS experiments of the solute in NaBr or NaI with
beam energies close to the absorbance edge of Br or I could
potentially provide the answer for this. One primitive way
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to account for the co-ion distribution is to construct a box
around the solute and assume the co-ions are completely
depleted inside this box (g = 0), whereas outside this box,
its concentration returns back to the bulk value (g = 1). The
shape of the box ideally closely resembles the solute, although
it is acceptable to use a rectangular box for the DNA here.
The size of the box is chosen so that the number of excess
co-ions Nco−ion in this box exactly matches the calculation
above. With F̃co−ion (q) approximately determined, we can now
extract the hydration term F̃hyd (q).

We need to account for the co-ion term because its
magnitude is of the same order as the counterion and
hydration water terms; the importance of co-ion exclusion
was emphasized in a recent “ion counting” study by Herschlag
and colleagues.36 A next level of approximation might be to
consider a co-ion distribution obeying Poisson–Boltzmann
equation, but this is beyond the scope of the current
manuscript. In addition, the lack of experimental data of
co-ion distribution also prevents us from considering more
sophisticated models in this work (since we do not know yet
which models are better).

As for the pure water case above, it is generally
most useful to compute the cross-terms F̃ion (q) F̃solu (q) or
F̃hyd (q) F̃solu (q). Examples are shown below.

III. RESULTS

A. Validation of the new decomposition scheme

As discussed above, the condition for decomposition of
the total scattering intensity into partial intensities is that
all the phases should be very close to each other for every
orientation of the q vector. To study the behavior of the phases,
we must rely on the calculated profiles. We choose to use the
calculated SAXS profiles computed by 3D-RISM as they have
been shown to match the experimental curves up to wide angle
region.13 The phase for each component is computed from the
complex amplitude of the corresponding term. The phases are
different at each orientation of q (with the same magnitude
q), and the average phase is shown in Fig. 1 for lysozyme

and a 25-bp DNA in 100 mM NaCl solution. It is expected
that those phases start to deviate from 0 as q increases, but at
small angles most of the phases are identical, except for the
co-ion Cl− in the DNA case, which is not surprising because
Cl− is mostly expelled from the DNA and its contribution
is expected to be negative. The average phase of the solute
closely tracks that of the solvent in the range of q < 0.1 Å−1,
but diverges sharply at larger angles. The validation of our
principle approximation is shown in Figure 2, which shows
that the relative phases of the solute and solvent are actually
aligned in all directions, and not just on average. Consider the
difference in phase between two amplitudes, α. From Eq. (15)
one has

cos α =
Fsolv (q) Fsolu (q)

|Fsolv (q)| |Fsolu (q)| , (22)

where the solvent amplitude is Fsolv (q) = Fhyd (q) + Fion (q).
Fig. 2 plots the average value of cos α over all orientations
of the q vector. The condition of cos α ≈ 1 is valid for
q < 0.1 Å−1, with a maximum deviation of 0.005, as shown in
the inset of Fig. 2. Above this limit the values of cos α depart
from unity rather quickly, as the phases of the solute and
solvent diverge. The angle at which cos α begins to deviate
significantly from unity determines the limits of this analysis,
and the behavior illustrated in Fig. 2 is empirical: in particular,
we do not yet understand how the limit q < 0.1 Å depends
on the size of the solute. Since the primary goal here is
to extract information about the solvent, it would not be
sensible to apply our model (at least in its current form)
to much larger (and usually more flexible) systems, since
uncertainties in those structures are much greater than those for
the single-domain proteins and oligonucelotides considered
here, and since it would be quite difficult to create solvent
models that could be tested by the means described in this
paper.

Fig. 3 illustrates the overall accuracy of Eq. (14),
comparing the total amplitude F̃ (q) and the sum of partial
amplitudes F̃k (q) for lysozyme and the DNA. The partial
amplitudes are defined and calculated as in Section II B.
For Lys, k is solu and hyd; while for DNA there are also

FIG. 1. Phases (plotted between −180◦ and +180◦) of component amplitudes in lysozyme (left) and DNA (right) from the 3D-RISM scattering profiles. Each
value is the average phase for a given magnitude of q, and the error bars report the standard deviation of the distribution of phases for different directions. The
phase of the total amplitude is also shown in red. For both systems, at small angle most of the amplitudes are aligned (i.e., in phase), except for the co-ion Cl−

in the DNA case, which is excluded from the solute and thus is out of phase.
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FIG. 2. Average values of cos α versus q for lysozyme (left) and DNA (right), where α is the phase difference between Fsolu(q) and Fsolv(q) (the standard
deviations are also depicted as error bars). At small angles up to 0.1 Å−1, the two amplitudes have nearly the same phase at every orientation of q with very
small error bars (see the insets which focus on the region below 0.1 Å−1), thus validating the decomposition of total intensity at small q region.

FIG. 3. Comparison between the “real” excess amplitude F̃ (q)=
I (q) (red) with the sum of component amplitudes F̃k (q)=


Ik (q) (black) for lysozyme

(left) and DNA (right) using calculated profiles from 3D-RISM. For Lys, k is solu and hyd; while for DNA there are also counter-ion (Na+) and co-ion (Cl−).
The difference between these two is plotted in the inset (blue).

counterion (Na+) and co-ion (Cl−). One can see that the sum
of partial amplitudes is a good approximation of the square
root of the measured intensity F̃(q) in the small angle region
(q < 0.2 Å−1).

To check whether the F̃hyd(q) extracted above reflects
the distribution of water in the reciprocal space, we compare

it with


Ihyd (q) computed directly from the (calculated)
water distribution around the solute. The Ihyd is calculated by
performing the SAXS calculation as usual, but ignoring the
solute term (the solute excess form factor F̃solu is set to 0, i.e.,
it does not interact with the X-ray beam). The result is plotted
in Fig. 4 (left) for lysozyme as the test case. It can be seen that

FIG. 4. (Left) Scattering amplitude of water F̃hyd(q) around lysozyme extracted from the sqrt subtraction (black) in comparison with those computed directly
from the water distribution (red). The difference between those two, as shown in the inset, is negligible at small angle. (Right) Pair distance distribution function
(PDDF) of water in the hydration shells computed for two curves in the left by indirect Fourier transformation of F̃2

hyd(q). Also shown in blue is the PDDF
calculated by using the direct method in real space (see Section V C for more details).
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F̃hyd (q) from the new analysis scheme is essentially identical
with the one computed from the 3-dimensional distribution
of water in the small angle region. We can test the utility of
this approximation to F̃hyd (q) by calculating the PDDF in real
space (details are in Section V C) and comparing this directly
with the 3-dimensional distribution. As can be seen in Fig. 4
(right), the PDDFs from all three approaches have similar
shapes, although the peak in the black curve is about 1 Å lower
than that of the blue and red curves. This illustrates the ability
of the proposed analysis to extract approximate (but useful)
solvent distribution around small and rigid biomolecules, but
distinctions between models whose differences are smaller
than that of the curves in Fig. 4 (right) could not be relied
upon.

In Secs. III B and III C, we apply this new analysis to
both calculated and experimental data for proteins and DNA.
The main goal is to study the quality of the predicted ion
and water distributions from different theoretical models, to
understand their weaknesses, and to provide a framework to
develop further approaches to improve the models and force
fields.

B. Protein test cases

Fig. 5 plots the “square-root” subtraction F̃hyd from SAXS
data and those from 3D-RISM and MD for lysozyme and
myoglobin (calculated from Eq. (16)). The total amplitudes
F̃ (q) = 

I (q) for lysozyme are also shown in the inset, which
shows little difference between calculated and experimental
total intensity profiles. However, applying the decomposition
scheme to extract F̃hyd from the data emphasizes the difference
between 3D-RISM and MD hydration profiles. This illustrates
the potential power of this analysis to guide the development
of computational models.

There are two main features that can be extracted from
those curves. The first is the total excess number of water
molecules in the hydration shell, visible at q = 0. Since each
water molecule has 10 electrons, F̃hyd (0) should be equal to
10 times the number of excess hydration waters Nhyd. Second,
the shape of the curve contains information about the water
distribution in the real space. If F̃hyd (q) decays rapidly towards
zero, that means the hydration shell is thick. On the other hand,

TABLE I. Number of excess hydration water for lysozyme and myoglobin
computed as Nex−hyd= F̃hyd(0)/10. Those numbers are very close to the
values computed by integration all over the hydration shells. For lysozyme,
RISM-KH values are 71.7 vs. 71.9.

Protein RISM-KH RISM-PSE2 RISM-PSE3 MD SAXS

Lysozyme 71.7 83.5 92.9 48.1 50 ± 1
Myoglobin 86.5 101.4 113.0 53.1 60 ± 2

if the curve slowly approaches zero, the hydration water shells
are more compact. Of course, it should be easier to explore the
latter feature in the real space rather than the reciprocal space
using a restricted Fourier transform (IFT or Indirect Fourier
Transform) technique.

All RISM closures tend to overestimate F̃hyd (q),
especially in the small angle region. The higher the order
of PSE-n closures, the more serious the overestimation is.
This indicates that the water attraction to the solute in RISM
is too strong. For example, in Lys, RISM-KH overestimates
Fhyd(0) by about 200, corresponding to ∼20 water molecules
(Table I). The MD results are in much better agreement with
the experiment. There are also some discrepancies around
q = 0.2 Å−1, where the new analysis scheme may break
down (see Fig. 2). It is worth emphasizing that although
the computed total SAXS profiles of those two proteins
from RISM and MD are nearly identical13 (see the inset in
Fig. 5), the extracted F̃hyd here is clearly able to separate
MD from RISM results. This demonstrates the power of the
proposed analysis and illustrates its potential use in testing
new theoretical models for solvent distributions.

To get information about the placement of those excess
water molecules in real space, we can compute the cross-
term F̃hyd (q) F̃solu (q) (via Eq. (18)) and transform it to real
space to obtain a pair distribution function by using the
IFT technique discussed in Section V C. The results for
two proteins, lysozyme and myoglobin, are given in Fig. 6.
Computed SAXS profiles for MD and 3D-RISM were taken
from Ref. 13 and analyzed in the same fashion as described
above for the experimental SAXS profiles. The PDDF plot is
essentially a distance histogram of hydration water and the
solute, weighted by the excess electron density (relative to the

FIG. 5. F̃hyd(q) for lysozyme (left) and myoglobin (right) from SAXS data (black circles, experimental data from Ref. 26), compared to RISM and MD
calculations. The calculation was done as in Eq. (16). The inset in the left shows the total F̃ (q)=

I (q) for lysozyme.
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FIG. 6. Pair distance distribution function (PDDF) of water-solute for lysozyme (left) and myoglobin (right). The PDDFs are computed by Fourier-transforming
(using IFT) the cross-term F̃solu(q)F̃hyd(q) for experimental data (black, taken from Ref. 26), MD (orange), and 3D-RISM.

bulk solution). 3D-RISM, regardless of closure, overestimates
the hydration water interaction with proteins, whereas results
from MD simulation are generally much better. The PDDFs
for the two proteins show rich structural features, especially
at small distances; this is reminiscent of similar structure seen
by Kofinger and Hummer29 (although their PDDF arises from
a Fourier transform of the total intensity, not of a component
as we use here). Since only excess waters that are close
to the proteins contribute to the PDDF, for nearly spherical
proteins, the peak location correlates well with the protein
radius.

To make sure the features observed in the PDDF are real,
and not artifacts of the IFT technique, we compute directly
the PDDF in the real space and find that it agrees well with
the IFT PDDF. (See Section V C for more details about
how we construct the excess density map.) For lysozyme,
we observe that using q ≤ 0.1 Å−1 is enough to construct a
“coarse” PDDF for the solute-hydration term (see Fig. 7).
Using less data leads to the difficulty of converging the IFT
procedure, whereas using more data introduces finer features
into the calculated PDDF. As shown in Figs. 2–4, however,
the validity of the analysis scheme is increasingly suspect
at larger angles, so these finer features are probably of little
interest.

FIG. 7. Influence of truncation in Fourier space on the PDDF in real space
of lysome-water term Fsolu(q)Fhyd(q). The transform is carried out by IFT
using experimentally extracted data.

C. Duplex DNA in salt solutions

If a solute is highly charged, the situation gets more
complicated because of the presence of the ionic atmosphere.
As we will show below, the contributions of counterions and
co-ions can be the same order of magnitude as that of the more
numerous hydration water molecules, so that one must account
for them in the decomposition. Anomalous SAXS (ASAXS)
is one approach to probe the spatial distribution of ions around
DNA.14,35 The ASAXS experiment probes the same sample at
two different energies, which causes the “effective” number
of electron in the interested ion to vary. However, the ASAXS
profile does not entirely come from the ion of interest but
also has contributions from hydration water-ion cross terms
(and solute-ion terms), making it difficult to interpret and
draw fruitful conclusions. Another technique is to use heavy
ion replacement where instead one varies the ion identity to
change the contrast. Using a novel analysis technique (instead
of the simple subtraction between the two scattering curves
as is done in conventional ASAXS), Meisburger et al.20 were
able to separate the ion-DNA term from the water-DNA term
and thus could gain insight into the nature of ion cloud around
duplex DNA. The method assumes that both the ion and
water distributions around DNA are not sensitive to ion type
and it has applied successfully to alkali chlorides. (See the
Appendix for the relationship between our analysis and the
method from Meisburger et al.) It is not clear how accurate
this assumption is or whether the same assumption would be
valid for highly charged ions (such as Mg2+ and Sr2+) since the
interaction between those ions with nucleic acids is expected
to be ion-dependent.37–42

Here, we apply our analysis method to a 25 base-pair
duplex DNA. Fig. 8 shows the ion-solute cross-terms for
experimental and calculated SAXS data of the duplex DNA
in 100 mM RbCl or 10 mM SrCl2. As for hydration waters,
we extract the total number of excess ions and a qualitative
description of their distribution in real space. (Probing the
ion cloud around charged biomolecules in a very dilute
solution, as the 10 mM SrCl2 solution, using MD simulation
is prohibitively expensive,43–46 so we only report 3D-RISM
results for Sr2+.) As reported earlier,13 and shown here in
Fig. 8 (at q = 0) and Table II, 3D-RISM (with high order
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FIG. 8. Rb+ –DNA (left) and Sr2+ –DNA (right) cross-terms from the calculated (color solid lines) and experimental (black dots) ASAXS data of DNA in
100 mM RbCl or 10 mM SrCl2 solutions; experimental data is from Ref. 13. The curves were offset to facilitate visual comparison. From those curves, one could
extract the excess number of ions (at q = 0) and qualitatively infer about the ion cloud around the DNA.

TABLE II. Number of excess ions around a −48 charged duplex DNA in 100 mM RbCl or 10 mM SrCl2
solutions, computed as N+= F̃ion(0)/Z+ from the new analysis scheme. Those numbers are very close to the
values computed by integration over all space. For example, values computed at RISM-PSE3 for Rb+ are 36.77
(from the q= 0 limit) vs. 36.85 (from directly integrating the distribution).

DNA/100 mM RbCl DNA/10 mM SrCl2

System ASAXS MD RISM-PSE3 RISM-PSE2 RISM-KH ASAXS RISM-PSE2 RISM-KH

Ncation 37 ± 2 37.95 36.77 35.08 30.16 20 ± 2 22.24 19.14

closures) and MD simulation (at least for monovalent ions)
are able to reproduce accurately the excess number of ions
around DNA, including both monovalent and divalent ions.

We also performed IFT to obtain the PDDFs of the
ion-DNA crossterm, which are shown in Fig. 9. The curves
for Rb+ look encouraging, especially for the MD simulation
and for high order closures in RISM. High order closures
tend to place more ions closer to the DNA, which is more
consistent with MD and experiment. The errors at large r of
the PDDF curves could arise from the way theoretical models
approximate ion-solute interaction. The PDDF curves for
divalent ions show large deviations from experiment despite
having somewhat reasonable agreement in the Fourier space

from PSE2 closure. This highlights the fact that the number
of excess ions should not be used solely to characterize
the ion cloud. Instead, information about the shape of the
ion cloud should be also taken into account. The 3D-RISM
model, in its current form, is known to have difficulties
with divalent ions,47,48 perhaps resulting from the lack of
polarization effects.49,50 More work currently is underway to
test new ion models in RISM calculations.

To determine the water hydration term, the co-ion term
(in this case Cl−) needs to be taken into account. We note that
the contribution of the solvent to the total intensity is based
on the scattering contrast (relative to the bulk concentration),
and since the co-ions are entirely excluded from such a

FIG. 9. PDDF of Rb+ –DNA (left) and Sr2+ –DNA (right) obtained by inverse Fourier transformation of the ion-DNA cross-terms F̃ion(q)F̃DNA(q). Results
are shown for experimental data (black, taken from Ref. 13), MD (orange) and 3D-RISM. The curves are offset to facilitate visual comparison. No MD data is
reported for SrCl2 due to the high cost of simulation for dilute (10 mM) solution.
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FIG. 10. Water hydration term F̃hyd extracted from SAXS data of the 25-bp DNA in 100 mM RbCl (left) or 10 mM SrCl2 (right) (computed as described in
Eq. (21)) for experimental SAXS (black error bars taken from Ref. 13), MD (orange), and 3D-RISM.

FIG. 11. PDDF of water-DNA in RbCl 100 mM (left) or SrCl2 10 mM (right), calculated by performing IFT for F̃DNA(q)F̃hyd(q). Black circles are from the
decomposition of experimental data reported in Ref. 13.

highly charged DNA, the contribution of this deficit to the
X-ray scattering difference is therefore significant. A simple
calculation shows that with the DNA considered here (which
has a −48e charge), NRb = 37 leads to NCl = −11 and therefore
F̃Rb (q = 0) = 1332 vs. F̃Cl (q = 0) = −198. The co-ion term
will contribute even more strongly if lighter counter-ions (Na+,
K+, . . . ) and/or heavier co-ions (Br−, I−, . . . ) are used. (A recent
ion counting experiment emphasizes the importance of co-ion
identity to the ion atmosphere around nucleic acids.36) Here,
we estimate the co-ion contribution using the simple model
described in Section II B 2.

The water term F̃hyd is then determined and plotted in
Fig. 10 for DNA in two different salt solutions. The PDDFs
of water-DNA in two different salt solutions are computed
by performing an IFT of F̃hydF̃DNA and are shown in Fig. 11.
All RISM and MD results overestimate the number of excess
waters; this is in contrast to the protein results reported above,
where MD simulations led to good estimates for the number
of excess waters. (The reason why the number of excess
waters is overestimated for nucleic acids by 3D-RISM and
MD is currently unclear, and future investigations are certainly
needed.) Furthermore, the predicted number of excess waters
is nearly the same for RbCl and SrCl2, whereas estimates
based on experiment vary a lot. The experimental values for
Nwat are ∼70 and 110 for RbCl and SrCl2, respectively, i.e.,

the difference is around 1.6 water molecules per base pair.
By contrast, the 3D-RISM-KH values are 144.0 and 130.0,
respectively (the difference is around −0.6 water molecules
per base pair, in the opposite direction). This difference could
potentially come from the fact that fewer Sr2+ are required
to neutralize the DNA than Rb+ (see Table II), leading to
fewer ions accumulating near the DNA surface and therefore
providing more space for water. Also, Sr2+ is expected to
have denser and stronger hydration shells than Rb+, which
will be dragged along the ions towards the DNA. The much
smaller concentration of SrCl2 compared with RbCl (10 mM
vs. 100 mM) is probably another factor leading to fewer ions
accumulating near the DNA surface.

IV. CONCLUSIONS

Water molecules and ions around biomolecules often play
a crucial role in function. Here we propose a new analysis
scheme for X-ray scattering data to extract information
about how water molecules and ions distribute around the
solute. Although the analysis requires some approximation,
it is accurate enough to obtain reliable partial scattering
intensities in Fourier space as well as distribution functions in
real space. The resulting distributions could then be used
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to study the dynamic nature of the solvation shells, for
instance, via time-resolved scattering techniques.51–53 It could
also be used to test the accuracy of theoretical predictions,
facilitating improvements in how those theories treat water
molecules, ions, and cosolvents in general. Comparing theory
vs. experiment for individual interaction terms (as in Figs. 6,
9, and 11) is likely to be more helpful in assessing the
strengths and weaknesses of theoretical models than just
making comparisons to the complete SAXS profile.

The proposed analysis complements recent experimental
techniques (such as ion counting12 and anomalous SAXS16)
by providing not only the number excess of particles but also
their distribution in real space. It is, however, worth restating
the fact that our decomposition requires an independent
knowledge of the structure of solute, which is assumed to
be rigid; it cannot be used (in its current form) for systems
with significant conformational heterogeneity or disorder,
primarily because uncertainties in computing the scattering
from the solute would probably lead to large uncertainties
in extracting solvent information. To illustrate the new
analysis, we extract the water hydration distribution around
two proteins—lysozyme and myoglobin—from regular X-ray
scattering profiles. Comparison between those experimental
distributions (extracted from SAXS data) and the calculated
distributions from 3D-RISM and MD simulation reveals that
MD simulation accurately accounts for water in terms of
both number of excess water and its real space distribution,
whereas 3D-RISM overestimates the number of excess waters
leading to the accumulation of water hydration near the
proteins. This overestimation comes from the approximate
treatments employed in the SSOZ and closure equations of
RISM.25

For highly charged systems such as the DNA duplex,
both MD simulation and 3D-RISM (with high order closures)
are capable of capturing the ion cloud of counterions around
the DNA, again both in terms of number excess and the
real space distribution. Water molecules, on the other hand,
are predicted to be too strongly attracted towards the DNA,
presumably the phosphate groups, by both MD simulation
and 3D-RISM. This is an unexpected result and highlights
the need to recalibrate nucleic acid force fields. There are
also some studies in the literature reporting a misbalance
between solute-water and solute-solute interactions, which
is probably relevant to the situation here.54–58 Our current
ongoing work suggests that the distribution of partial atomic
charges within the phosphate group needs to be adjusted to
calibrate the DNA-water interaction. A full analysis of those
errors is beyond the scope of this paper and will be presented
elsewhere.

We have chosen in Eq. (7) to include the “excluded
volume” effect (the fact that solvent is excluded from the
interior of the biomolecule) into our definition of Fsolu(q).
This was an arbitrary choice, but driven by the fact that the
“excluded volume” effect can be easily computed from a
known structure, and by the perspective that the “interesting”
parts of hydration are those that take place outside the solute
interior. But other choices, such as including only the first
term of Eq. (7) in Fsolu(q), are possible and do not change the
analysis method here in any fundamental way. Future studies

should help to determine the relative strengths and weaknesses
of difference decomposition methods.

V. COMPUTATIONAL DETAILS

We took two proteins—lysozyme and myoglobin—and
a 25-bp duplex DNA as test cases for validating the new
analysis scheme. The coordinates for the proteins were taken
from Protein Data Bank with PDB ID 1WLA and 6LYZ for Mb
and Lys, respectively. The DNA structure with the sequence
of GCATCTGGGCTATAAAAGGGCGTCG was built by
Nucleic Acid Builder (NAB) using ideal fiber diffraction
models. The all-atom Amber force field ff99-bsc059 was used
for the DNA and ff14SB60 for proteins. (Since there is no
histidine-bound heme group parameter for Amber force field,
we use the cysteine-bound heme parameter for Cytochrome
P450 taken from Shahrokh et al.61) Monovalent ion (alkali,
halide) parameters were taken from Joung–Cheatham ion
model.62 Sr2+ ion was taken from Li et al. (we here report
the IOD set results as we found that there was no difference
between SAXS calculations using these three sets).63

A. MD simulations

For each system, the solute was immersed in a
preequilirated cubic water box with a buffer distance of
20 Å (proteins) or 60 Å (DNA). Counter-ions were added
to neutralize the protein systems. For DNA, Na+ (or
Rb+) and Cl− ions were added to neutralize the negative
charges and reach the concentration of 100 mM. Nonbonded
interaction cutoffwas set at 9.0 Å. The long-range electrostatic
interaction is calculated by using the smooth particle mesh
Ewald method.64,65 Equations of motion were integrated by
employing the leap-frog Verlet algorithm with a 2 fs time
step. Covalent bond lengths involving hydrogen atoms were
constrained using SHAKE.66 The system was first minimized
with 2000 steps of steepest descent, followed by 3000 steps
of conjugate gradient method to remove bad contacts. The
system was then equilibrated at 298.15 K and 1 atm with the
solute kept fixed (with the restraint of 10.0 kcal/(mol. Å2)) for
25 ns (proteins) or 120 ns (DNA). Temperature was regulated
by using Langevin thermostat with a collision frequency of
2.0 ps−1 while pressure was maintained using Berendsen
barostat. All simulations were performed using the GPU
accelerated pmemd code (pmemd.cuda).67–69 Only the last
20 ns (for proteins) or 80 ns (for DNA) of trajectories were
kept and subjected to SAXS calculation.

In order to calculate SAXS intensity for the solute from
MD simulation, another “blank” system in which there is
only pure solvent (water molecules and ions, and no solute
present) is needed.26 We set up the pure solvent boxes that
are nearly identical to the “sample” system (box size, running
condition) except there is no solute in it. The equilibration
step was run for 20 ns (only water) or 50 ns (with ions).
Both trajectories of “sample” and “blank” systems were used
to calculate SAXS using the saxs_md code in AmberTools,
which followed exactly the protocol described in Refs. 26
and 13.
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B. RISM and SAXS calculations

3D-RISM is a microscopic approach to calculate the
equilibrium distribution of a solvent on a three-dimensional
grid around a fixed solute. The theory25 and implementation
in Amber70 have been widely reviewed, and only the most
important considerations are given here.

3D-RISM provides the solvent structure in the form of
a 3D site distribution function, gUV

γ (r), for each solvent
site, γ. With gγ (r) → 1, the solvent density distribution
ργ (r) = ργgγ (r) approaches the solvent bulk density ργ. The
3D-RISM integral equation has the form

hUV
γ (r) =


α


dr′cUV

α (r − r′) χVV
αγ (r ′), (23)

where superscripts U and V denote the solute and solvent
species, respectively; h (r) = g (r) − 1 is the site-site total
correlation function; cUV

α (r) is the 3D direct correlation
function for solvent site α; and χVV

αγ (r) is the site-site
susceptibility of the solvent, given by

χVV
αγ (r) = ωVV

αγ (r) + ραhVV
αγ (r). (24)

Here, ωVV
αγ (r) is the intramolecular correlation function,

representing the internal geometry of the solvent molecules
while hVV

αγ (R) is the site-site radial total correlation function of
the pure solvent calculated from the dielectrically consistent
version of the 1D-RISM theory (DRISM). Eq. (23) is often
complemented with the 3DRISM-KH closure

gUV
γ (r) =




exp
(
dUV
γ (r)) for dUV

γ (r) ≤ 0

1 + dUV
γ (r) for dUV

γ (r) > 0
,

(25)

where

dUV
γ (r) = −uUV

γ (r)
kBT

+ hUV
γ (r) − cUV

γ (r),

and uUV
γ (r) is the 3D interaction potential of the solute acting

on solvent site γ, given by the sum of the pairwise site-site
potentials from all the solute interaction sites i located at Ri,

uUV
γ (r) =


i

uUV
iγ (|r − Ri |). (26)

The so-called hypernetted chain (HNC) closure would use
just the top line of Eq. (25) and is generally the most
accurate common closure for polar systems with strong long-
range interactions, but it is often difficult to find converged
solutions. The KH closure is easier to converge. The partial
series expansion of order-n (3DRISM-PSE-n) offers a way to
interpolate between KH and HNC,71

gUV
γ (r) =




exp
(
dUV
γ (r)) for dUV

γ (r) ≤ 0,n

i=0

dUV
γ (r)i

i!
for dUV

γ (r) > 0. (27)

Hence, KH is the special case of PSE closure when n = 1;
and when n → ∞ HNC is obtained. For the purposes of this
paper, results from different closures offer a way to generate
a series of plausible solvent models; we can then use our
analysis to test the ability of small-angle scattering data to
discriminate among these.

All RISM calculations were performed using the rism1d
and rism3d.snglpnt codes from AmberTools.70 The water
model used in this study was cSPC/E.70 First, the 1D-RISM
was carried out with only the solvent (water + ion if any)
to obtain the solvent susceptibility χVV

αβ which contained all
the information about the bulk solvent. This was subsequently
used for 3D-RISM to compute the solvent structure around
a solute of choice. Thus one needed to perform only one
1D-RISM step and used the resulting χVV for all subsequent
3D-RISM calculations which were at the same condition
(salt concentration, temperature, pressure, etc.). The modified
direct inversion of the iterative subspace solver (MDIIS)72

was used to iteratively solve the RISM equations to a residual
tolerance of 10−12 and 10−5 for 1D and 3D-RISM, respectively,
at 298.15 K. For 1D-RISM, the 0.025 Å grid spacing was
used with 16 384 and 32 768 grid points for pure water
and 100 mM RbCl solution, respectively. With more diluted
solutions (10 mM SrCl2, for example), the grid points were
doubled until we got the results converged. For 3D-RISM,
a 3D grid with 0.5 Å grid spacing was used with the buffer
region of 20 Å for proteins and 40 Å for DNA in 100 mM
RbCl and up to 80 Å for 10 mM SrCl2.

The output from 3D-RISM program was 3-dimensional
g(r) for each atomic site in solvents (for instance, Hw and Ow
in water), reflecting the excess or deficit of each solvent site
relative to bulk concentration around the solute in real space.
Those were then served as inputs to compute SAXS profiles
using the saxs_rism code in AmberTools.13

C. Pair distance distribution functions (PDDF)

1. Indirect Fourier transform (IFT)

The PDDF is the ultimately sought quantity and carries
the most information content from SAXS experiment. In
principle, a direct Fourier transform of the pseudo-intensity�
F̃hyd (q)�2 should provide a real space representation of

the distribution of hydration water under the form of the
PDDF phyd (r). However, such an approach is of little
use since it gives large systematic errors because of the
noise, smearing, and truncation of the experimental data.
Instead, indirect Fourier transform (IFT) technique was
developed long time ago, pioneering by Glatter,73 Moore,74

and Svergun et al.75 to deal with this problem. The main
idea of IFT was to express the PDDF p (r) as a linear
combination of a set of smooth basis functions and fit the
coefficients in order to reproduce the intensity in reciprocal
space. In this work, we used the IFT method based on
Bayesian analysis from Hansen, which was shown to give
similar results with Glatter method; all tranformations were
performed using the webserver BayesApp.76–78 Since IFT
is an underdetermined problem, i.e., several solutions can
fit the experimental data equally well, additional constraints
must be introduced to obtain unique solution.73–76 The PDDF
is first written as a sum of smooth basis functions (cubic
B-splines, for instance) p (r) = 

i aiBi (r). The coefficients
ai are then tuned by minimizing the regulation functional
S, subjected to the constraint that χ2 takes sensible value,
with χ2 =

 �
Iexp

�
qj

�
− Itrans

�
qj

��2
/σ2

j and σ j is the standard
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FIG. 12. Comparison between water-solute PDDF computed by IFT and “direct” method for lysozyme using RISM-KH (left) and MD (right) data. For the
“direct” method, two grids of excess electron density are created separately for the solute and hydration shells. The PDDF is then computed by making a
distance histogram between the solute and hydration water, weighted with the excess electron density. See the text for a detailed description of the “direct”
method. With IFT, two separate calculations are performed: (i) using all q-data in the reciprocal space (red) or (ii) using only q < 0.1 Å−1 (green). Although the
decomposition is strictly “correct” only at q < 0.1 Å−1 (see Figs. 3 and 4), introducing higher q-data helps the extracted PDDF to closely approach the “real”
PDDF (computed directly from the distribution).

deviation at data point j. The regulation functional S usually
controls the smoothness of the solution and several forms of
it exist. We followed Hansen and used S =


p′′(r)2dr .76–78

2. Direct calculation

The PDDF is related to the density-density correlation
by79,80

p (r) =


V

ρ (r′) ρ (r + r′) dr′

,

where ρ (r) is the scattering contrast (difference in electron
density relative to the bulk density). To generate an electron
density map of the solute, we assume that the solute is
composed of isolated atoms (not chemical bonded), and the
deformation electron density is negligibly small. (It should
be noted that there are lots of work done to incorporate
the anisotropicity and asphericity of electron density in
order to minimize the deformation density, for example, see
Refs. 81–83.) The density is thus computed by summing up
the contribution of all the atoms. In practice, since electron
is mostly found near the nucleus, a simple cutoff to decide
whether an atom contributes electron density is sufficient. One

way that is widely used in X-ray crystallography to compute
the electron density around an atom is via the analytic Fourier
transform of the atomic scattering factor.84,85 Conventionally,
the atomic scattering factor was fitted with the sum of some
Gaussian terms (with a and b are tabulated constants for
each atom, we use here the sum of six Gaussians by Su and
Coppens86),

f
( q

4π

)
=


aie−biq

2/16π2
.

Fourier transform of the above formula gives the electron
density at a distance r (Å) from the nucleus,

ρ (r) =


ai

(
4π
bi

)3/2

exp
(
−4π2r2

bi

)
.

The PDDF can also be calculated for the cross-term,
F̃hyd (q) F̃solu (q) or F̃counterion (q) F̃solu (q). This time the density
must come from both solute and water (or counterions),

p (r) =


V

ρi (r′) ρ j (r + r′) dr′

.

A comparison between the “direct” and IFT PDDF
for lysozyme is shown in Fig. 12. Although there is some

FIG. 13. Comparison between ion-DNA PDDF computed by IFT and “direct” method for Rb+ (left, using RISM-PSE3 distribution) and Sr2+ (right, using
RISM-PSE2 distribution). See Section V C for a detailed description of the “direct” method.
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FIG. 14. Pion(q) (left) and PDNA−ion(q) (right) comparison between two analysis schemes for the DNA SAXS data: Black circles are from Meisburger et al.;20

red circles from the method proposed here. Error bars are computed by propagating the errors from experimental intensity data. P(q) is actually a normalized
Fion(q)FDNA(q) curve (in Fig. 8), so the error bars here are the same error bars in Fig. 8 after normalization. They were computed by propagating the error bars
when (square root) subtracting the two experimental intensities Ioff and Ion for F̃ion, times with F̃DNA.

slight discrepancy at 30–40 Å distance (the IFT moderately
underestimates the PDDF in this range), the two methods agree
quantitatively, suggesting that the new analysis proposed here
is capable of obtaining a usefully accurate pair distribution.
Fig. 13 shows a similar comparison between the direct and
IFT PDDF profiles for ion-solute pair distances in DNA.
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APPENDIX: COMPARISON TO AN ALTERNATE
DECOMPOSITION APPROACH

Instead of using different beam line energies to change the
efficient contrast of the interested ion, one may instead vary
the ion itself and assume both the ion and water distributions
are unchanged. Meisburger et al. express the total SAXS
intensity as20

I (q) = δ2
soluPsolu (q) + 2δsolu (δionNion) Psolu−ion (q)
+ (δionNion)2Pion (q) , (A1)

where δ is the scattering contrast and P is the partial scattering
form factor (which has a range from 0 to 1). For the
solute, δsolu = Zsolu + NwatZwat; therefore, it includes all the
contributions from water coming from both from the excluded
volume and hydration shells. The first term in Eq. (A1) is
equivalent to the sum of solute and water in our approach,

F̃2
solu+hyd (q)
=
�
F̃solu (q) + F̃hyd (q)�2

=
�(Zsolu + NexclZwat) f̃solu (q) + NhydZwat f̃hyd (q)�2 (A2)

with f̃ is the normalized F̃ ( f̃ (0) = 1) and the number
of excess waters Nwat is partitioned into excluded volume

contribution Nexcl and hydration contribution Nhyd. If one
assumes f̃solu (q) = f̃hyd (q) then the right hand side of Eq. (A2)
could be rewritten as (Zsolu + NwatZwat)2 f̃ 2

solu (q), leading to

Psolu (q) = f̃ 2
solu (q) . (A3)

The third term in Eq. (A1) is equivalent to our ion term,

F̃2
ion (q) =

�
NionZion f̃ ion (q)�2. (A4)

Comparing Eq. (A4) with the last term of Eq. (A1) leads
to

Pion (q) = f̃ 2
ion (q) .

The cross-term in Eq. (A1) is then

Psolu−ion (q) = f̃solu (q) f̃ ion (q) . (A5)

Eqs. (A3)-(A5) relate the two different approaches to
extract ion distribution from X-ray scattering experiment. It
is obvious that P (q) and f̃ (q), which are both defined to be
within 0 and 1, are basically the same entity. P (q) couples with
the intensity I, while f̃ (q) couples with the partial amplitude
F̃. The advantage of using f̃ (q) instead of P (q) is that every
component is separated completely from each other and there
is no cross-term; therefore, one only needs n f̃ (q) instead of
∼n2 P (q) to specify a system with n components. In addition,
the partial amplitudes are additive while the intensities are
not, which is potentially easier to work with.

Fig. 14 compares Pion (q) and Psolu−ion (q) from Meis-
burger et al. and our analysis. P (q) from our method
is directly related to f̃ (q) which is nothing but the
normalized F̃ (q). It is apparent that the two methods agree
quantitatively despite the fact that Meisburger et al. implicitly
assume f̃solu (q) = f̃hyd (q), which seems to be reasonable (the
hydration shell shape should be somewhat similar to the solute
shape).
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