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A new method is introduced to compute X-ray solution scattering profiles from atomic models of
macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM)
from liquid-state statistical mechanics is employed to compute the solvent distribution around the
solute, including both water and ions. X-ray scattering profiles are computed from this distribution
together with the solute geometry. We describe an efficient procedure for performing this calcula-
tion employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no
adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for
two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen
biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for
studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex
DNA in solution yields close agreement with the observed scattering profiles in both the small and
wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous
SAXS signals (for Rb+ and Sr2+) emphasize the ionic contribution to scattering and are in reason-
able agreement with experiment. In cases where an absolute calibration of the experimental data at q
= 0 is available, one can extract a count of the excess number of waters and ions; computed values
depend on the closure that is assumed in the solution of the Ornstein–Zernike equations, with results
from the Kovalenko–Hirata closure being closest to experiment for the cases studied here. © 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896220]

I. INTRODUCTION

X-ray scattering of biomacromolecules in solution,
albeit a low-resolution method, shows much promise as a
complementary tool to crystallography and NMR.1–5 The
computation of scattering profiles from atomic models can
be a difficult task, even in the simplest case where the solute
molecule adopts a known, single, and relatively rigid confor-
mation in solution. Because both solute and solvent contribute
to the scattering, the perturbation of the solvent (usually water
and ions) by the biomolecule must be understood and prop-
erly modeled in order to make comparisons to experiment.

Several methods have been developed to include the con-
tribution of water to the overall scattering profiles.6–15 Most
rely on the simplified models of water to account for the scat-
tering of excluded volume and hydration shell. Crysol,9 for
example, assumes a layer of uniform excess hydration den-
sity around the surface of the protein. However, the surface
topology, electrostatics and hydrophobicity patterns surely
play a role as well. The water shell, additionally, is com-
posed of successive layers of excess and deficient density
relative to the bulk. Different approaches have been consid-
ered to describe the hydration shell more realistically, from
treating solvent as an assembly of freely orienting and in-
teracting dipoles,12 to reconstructing the three-dimensional
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hydration shell by combining a set of proximal radial distribu-
tion functions for different atom types extracted from molecu-
lar dynamics (MD) simulations.14 In principle, molecular dy-
namics simulations can also provide such information,15, 16

but these are difficult to converge (especially for ions in the
vicinity of charged biomolecules), and are computationally
tedious and expensive.

The promising intermediate approach explored here uses
integral equation theory to estimate thermally averaged wa-
ter and ion distributions on a three-dimensional grid sur-
rounding the biomolecule at a fraction of the cost of MD
simulations.17–19 These estimates are certainly imperfect
ones, as they are based on simple force field models for the
relevant atomic interactions, and use approximate closures
and averaging procedures to treat molecular solvents like wa-
ter. We show here that they are nevertheless accurate enough
to provide good estimates of X-ray scattering out to angles
corresponding to q < 1.5 Å−1 (q = 4πsin θ /λ where 2θ is
the scattering angle and λ is the wavelength). Once the force
field and closure are determined, there are no adjustable pa-
rameters in this model. The results can be of particular use
in treating salt solutions and for comparisons to experiments
where an absolute calibration near q = 0 is available.

In this paper, we present our computational model, and
make comparisons to both experiment and MD simulations
for relatively rigid proteins and a DNA duplex. Our compu-
tational models have been added to the AmberTools suite of
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simulation programs, available at http://ambermd.org.
We do not consider here the “inverse” problem of interpreting
experimental data arising from an unknown structure, or from
samples where an ensemble of structures is contributing to
the scattering. Nevertheless, the computations described here
are efficient enough to be applied to large numbers of pro-
posed structures (or to structural ensembles), and are based
on a physically-motivated model for solvent effects that ap-
pears to be more accurate than any other currently-available
procedure. It is likely that these ideas could form the basis for
model discovery and selection in a wide range of problems.

II. THEORY AND BACKGROUND

A. Reference interaction site model theory

Small angle X-ray scattering (SAXS) is a solution based
technique. Therefore, it is important to have an accurate de-
scription not only of the macromolecule under investigation
but also the water molecules and ions around it. The strength
of the approach described here lies in our ability to describe
the solvent environment in terms of the reference interaction
site model (RISM). RISM is a microscopic approach to cal-
culate the equilibrium distribution of the solvent and its asso-
ciated thermodynamic properties.19–22 The procedure begins
with the Ornstein–Zernike (OZ) equation

h(r12,�1,�2) = c(r12,�1,�2)

+ρ

∫
dr3d�3c(r13,�1,�3)h(r32,�3,�2),

(1)

where ri j is the vector connecting particles i and j, �i and �j
are the orientation of particles i and j, respectively, relative to
ri j , c is the direct correlation function, h is the total correla-
tion function

hij (rij , �i,�j ) ≡ gij (rij , �i,�j ) − 1, (2)

where gij is the pair distribution function.
The OZ equation effectively defines the direct correla-

tion function, but to solve it, it is necessary to have a second,
so-called closure, equation that relates h and c, which is con-
ventionally written as

g(r12,�1,�2) = exp[−βu(r12,�1,�2) + h(r12,�1,�2)

−c(r12,�1,�2) + b(r12,�1,�2)] (3)

or in a shorter form

g = exp[−βu + h − c + b]. (4)

Here u is the potential energy function and b is an unknown
“bridge function.” In the hypernetted-chain approximation
(HNC), b is set to zero, giving

gHNC = exp[−βu + h − c]. (5)

The HNC closure gives good results for ionic and po-
lar systems, but poorer results for neutral systems, and it can
be difficult to find converged solutions.22–24 To address this,

Kovalenko–Hirata introduced the KH closure as follows:17

gKH =
{

exp[−βu + h − c] if g ≤ 1,

1 − βu + h − c if g > 1.
(6)

The partial series expansion of order-n (PSE-n) offers a way
to interpolate between KH and HNC, and thus improves the
results of KH closure while circumventing the convergence
difficulty met in HNC closure25

gPSE−n =
{

exp[−βu + h − c] if g ≤ 1,∑n
i=0

[−βu+h−c]i

i! if g > 1.
(7)

Hence, KH is the special case of PSE closure when n = 1; and
when n → ∞ HNC is obtained.

For the pairwise non-bonded potential u, we use the stan-
dard Coulomb and Lennard–Jones terms, with parameters
taken from a molecular mechanics force field

u12 (r) = q1q2

r
+ ε12

[(
Rmin,12

r

)12

− 2

(
Rmin,12

r

)6
]

.

(8)
First a 1D-RISM calculation is carried out with only the sol-
vent (water + ions) to obtain the solvent susceptibility χV V

αβ

which contains all the information about the bulk solvent.
This solution will be subsequently used for 3D-RISM to com-
pute the solvent structure around a solute of choice.17, 18, 26

Thus, at each condition (salt concentration, temperature, pres-
sure ...), one needs to perform only one 1D-RISM step. The
resulting χV V can be used for all subsequent 3D-RISM calcu-
lations. These latter calculations yield distribution functions
that reflect the excess or deficit of each solvent site relative to
bulk concentration on a grid around the solute in real space.
From these density distributions, one can compute the excess
electron density and SAXS profile for the solute.

B. Computing SAXS profiles

X-ray scattering experiments on biomolecules compare
the scattering intensity from the sample of interest to a
“blank” with just solvent present, and report the difference,
or “excess” intensity

I (q) = 〈|A(q)|2〉t − 〈|B(q)|2〉t , (9)

where A (q) and B (q) are Fourier transforms of the scatter-
ing amplitudes for the sample and blank, respectively. The 〈〉t
bracket indicates the intensities are averaged over the mea-
surement time and volume. Following Park et al.,16 we show
in Sec. VII B that this expression can be approximately, but
usefully, replaced by

I (q) � [〈A1(q)〉 − 〈B1(q)〉]2, (10)

where A1 (q) and B1 (q) are Fourier transforms for the sam-
ple and blank, respectively, but here only considering re-
gions where there is excess/deficit electron density relative
to the bulk. The 〈〉 bracket is now the ensemble average.
This approximation is valid up to angles corresponding to
q � 1.5 Å−1.

This approach has several considerable computational
advantages for grid-based representations of the solvent. First,
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we do not need to include the bulk into the calculation as in
Eq. (9), so that the three-dimensional grid need only cover re-
gions where the solvent is perturbed by the solute. Although
we only consider local regions around the solute, the fact that
we compute the difference between the two amplitudes as in
Eq. (10) effectively treats an infinitely large system (in the
bulk region, A = B) and therefore does not introduce any ar-
tificial boundary whose shape could influence the result. Sec-
ond, the amplitude computation (Eq. (13), below) is linear in
the number of grid points, whereas an intensity calculation
(e.g., from a Debye sum) is quadratic in the number of grid
points. (A recent study by Berlin et al.27 describes an alterna-
tive approach to the Debye sum which scales with O(Nlog N),
which might also be adapted to the grid representation used
here.) The excess intensity calculation consists of two major
steps, which are outlined in Secs. II B 1 and II B 2.

1. Computing the excess amplitude

We first compute the excess amplitude of the system
(equivalent to 〈A1(q)〉 − 〈B1(q)〉 in the context of Eq. (10)),

A1(q) − B1(q) = F (q) = Fsolu(q) + Fgrid (q), (11)

where

Fsolu(q) =
∑

j

fj (q) exp

(
−Bjq

2

16π2

)
exp(−iq.rj) (12)

is the form factor of the solute. The Debye–Waller factor Bj
roughly accounts for thermal motion, discussed in more detail
in Sec. VII B 3.

The contribution from the solvent Fgrid (q) is computed
by performing a 3D Fourier transformation of the excess elec-
tron density, using the so-called CUBE method7, 14

Fgrid (q) =
N

grid∑
j

fj (q)e−iq.rj , (13)

fj (q) = 8
sin

( q
x
a

2

)
sin

(
q

y
b

2

)
sin

(
q

z
c

2

)
qxqyqz

ρ
(j )
xe , (14)

where ρ
(j )
xe is the excess electron density in the jth cell of the

rectangular grid, with length, width, and height a, b, c. ρ
(j )
xe ,

in turn, is calculated by summing up all excess densities from
individual atom types in the solution (for instance, Hwat, Owat,
Na+, and Cl- in NaCl solution)

ρ
(j )
xe =

∑
k

Zkρk[gk(rj) − 1] (15)

with ρk and Zk as the bulk density and the atomic number of
the kth atom or ion, respectively. At each grid point the excess
density is accounted for by the term

[
g (r) − 1

]
from the solu-

tion of the 3D-RISM equations. In Eq. (15), all the electrons
of an atom/ion from the grid are assumed to reside within the
cell where the nucleus is, in our case, a cube of length 0.5 Å.
(We show in Sec. VII B 4 below that a more realistic assign-
ment of electron density to the grid has a negligible effect on
the computed profiles.)

0 0.5 1 1.5
q (A-1)

10000

1e+05

1e+06

1e+07

I SA
X

S(q
)

L=170; n=21
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Quadrature convergence

FIG. 1. Test of convergence of different quadrature orders. L is the number
of points on the sphere surface, and n is the precision order (all spherical
harmonics of order less than or equal to n will yield exact results). The two
most accurate orders (n = 59 and 71) give relative errors within 0.2% for
q = 1.5 Å−1.

2. Computing the excess intensity

We next compute the excess intensity by performing
spherical averaging

I (q) = 1

4π

∫
|F (q)|2d�. (16)

One of the fastest and most accurate ways to perform spheri-
cal integration is to use Lebedev quadrature, which is analo-
gous to Gaussian quadrature in a linear dimension28, 29

∫
|F (q)|2d� ≈

N
p∑
i

wi |F (qi)|2, (17)

where the points are at pre-defined directions in a unit sphere
(forming a two-dimensional grid on the sphere surface) with
the weights wi . Since I (q) = I (−q), we gain additional
speed-up by evaluating the scattering vectors in only one
hemisphere. As q increases, more points are needed to esti-
mate the integral with high accuracy. For example, we use 38
grid points at q = 0.01 Å−1 and 1202 grid points at q = 1.00
Å−1 which is sufficient to keep the relative errors within 10−3

(Fig. 1).

III. RESULTS FOR PROTEINS

A. Myoglobin and lysozyme

It has long been recognized that the solvent shell around a
protein significantly impacts the shape of the measured SAXS
profile. As a first test of the RISM–SAXS method which ef-
ficiently generates the solvent distribution around a specified
solute, Figure 2 compares the calculated profiles of lysozyme
and myoglobin with experiment and with MD simulation re-
sults reported earlier.16 The results are shown in both loga-
rithmic and linear scale to exploit the benefits of both – the
log scale can show the overall shape of the curve, whereas a
linear scale can show more clearly the details at intermediate
angles.
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FIG. 2. SAXS profiles of lysozyme (left) and myoglobin (right) calculated from RISM with KH and PSE3 closures, plotted in log scale (top) and linear
scale (bottom). Experimental data (error bars) and MD curve are taken from Park et al.16 The data are offset for visual comparison with experiment (for the
logarithmic plot, the scaling factor is 10 while for the linear plot, the offset factor is 4 × 104).

It can be seen in both cases that RISM reproduces the
peaks and troughs of the SAXS profiles and is on par with
MD simulations up to q � 1.5 Å−1. Obtaining good results
beyond that threshold with RISM is difficult as fluctuation ef-
fects emerge that depress the excess intensities (see Figure 11
in Sec. VII B below). The computed results are promising if
one considers that RISM is an “implicit” solvent theory; how-
ever it differs from other implicit solvent programs (for ex-
ample, Crysol9) because RISM directly computes the solvent
distribution around the solute considering only interactions
between the solute and solvent, without further assumptions
or fitting parameters. The agreement between RISM–SAXS
with explicit solvent models (MD) and experiment indicates
that we can capture the hydration shells and SAXS curves by
using RISM theory, at a fraction of the computational time
associated with MD.

B. Comparison to other methods

Figures 3 and 4 show SAXS profiles calculated by some
widely used tools (Crysol,9 FoXS,10 AXES,11 AquaSAXS,12

and Hypred14). For lysozyme, all of them do relatively well
at small angle. Crysol, despite its simplicity, is able to pro-
vide an excellent fit with the experiment up to 1.5 Å−1, but
overestimates scattering near q = 0 region. For myoglobin,

no tools could predict the scattering curve satisfactorily, even
at small angle region, except RISM–SAXS and, less satisfac-
torily, Hypred and AXES. It also should be noted that, a scal-
ing factor is needed to plot the predicted profiles from other
tools in order to match with the experiment, whereas nothing
similar is needed in RISM–SAXS.

We have also performed calculations with structures that
have experimental SAXS curves in the BioIsis.net database.
A measure of the discrepancy between the experimental and
predicted profiles is computed as

χ2 =
∑

i

[
Iexp(qi) − aIcal(qi)

σexp(qi)

]2

(18)

with a is the scaling constant and σ is the experimental uncer-
tainty. As discussed below in Sec. IV B, we do not need any
adjustable parameter to fit to experiments that have an abso-
lute calibration (say against pure water); however, the experi-
mental curves in BioIsis database are all relative, and a scaling
factor is needed.

Table I reports χ values between the predicted and ex-
perimental SAXS curves for several widely used tools for
predicting scattering profiles with comparison with RISM.
The default parameters in all these tools are used (no fitting
attempt has been made). The Hypred server is not able to
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FIG. 3. Comparison between other methods for calculation SAXS of
lysozyme: Crysol, FoXS, AXES, AquaSAXS, and Hypred, plotted in log
scale (a) and linear scale (b).

process nucleic acid pdb files (28BPDD and 2SAMRR), so
those are not included in the statistics.

The RISM performance is encouraging, showing the
best results for all tools tested with the average χ = 5.92.
However, it does encounter some difficulties, for instance in
glucose isomerase (χ = 13.82) and superoxide dismutase
(χ = 7.69). There are also structures that have highly flexible
loops extending away from the protein core (Human regula-
tor of chromosome condensation and glycosyl hydrolase+C-
terminus), and thus are impossible to fit to experiment using
only a single conformation. Whenever RISM fails, other tools
do also. The model imposes a computational cost, discussed
below; computation usually takes several minutes for small
molecules to half an hour for biomolecules on a conventional
desktop. This is faster than MD, but slower than most compet-
ing methods, and requires a force field representation before
the integral equations are solved. Further study is needed to
optimize this approach, especially in the presence of confor-
mational heterogeneity.

IV. RESULTS FOR DUPLEX DNA IN SALT SOLUTION

A. The ion atmosphere around duplex DNA

Few experimental techniques can directly probe the spa-
tial distribution of ions in the positively charged cloud around

χ
χ

χ
χ
χ
χ

FIG. 4. Same in Fig. 3, but for myoglobin.

DNA.30, 31 Popular theoretical models include counterion
condensation32, 33 or Poisson–Boltzmann (PB) theories,34, 35

although PB results for duplex DNA are in poor agreement
with results from dialysis-type experiments.26 MD simulation
can also provide atomic details and in principle can describe
the ionic atmosphere with great accuracy.36–38 However, the
computational cost is large, especially for the sampling of
ions. Recently, RISM has been employed as a relatively cheap
method to obtain a picture of the ion atmosphere around DNA,
comparable to that of MD simulations.26, 39

Figure 5 shows an experimentally acquired SAXS profile
of a 25-bp duplex DNA in 100 mM NaCl solution. Experi-
mental details are provided in Sec. VI. This mixed sequence
duplex is expected to assume the B-form. Also shown are dif-
ferent scattering profiles computed by RISM, including the
two helical forms of DNA that best resemble the data: B and
B’ forms. All models are built with the w3DNA web server40

(see Fig. 6). The B’-form has a slightly wider major groove
and narrower minor groove (the all heavy atom, i.e., with-
out hydrogens, RMSD between these two structures is only
0.71 Å). This figure demonstrates the sensitivity of SAXS to
the helical topology of the DNA, as mentioned above. The
scattering from the B-form is in better agreement with ex-
periment at the lowest and highest (q > 0.6 Å−1) angles, but
varies around q = 0.4 Å−1. To further emphasize the differ-
ence in scattering profiles between these two forms at high
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TABLE I. Performance comparison (χ value) for RISM–SAXS and other tools. Structures and experimental SAXS are all taken from the BioIsis.net database.

Molecule PDB BioIsis–ID qmax(Å) Crysol AXES FoXS AquaSAXS Hypred RISM

28 bp DNA ... 28BPDD 0.33 1.11 2.19 1.66 1.42 ... 0.73
Immunoglobulin-like domains 3PXJ LAR12P 0.33 4.52 8.05 3.82 24.30 3.72 3.53
1 and 2 of the protein
tyrosine phosphatase LAR3
S-adenosylmethionine 2GIS 2SAMRR 0.30 2.52 2.53 2.10 9.22 ... 2.12
riboswitch mRNA
Superoxide dismutase 1HL5 APSODP 0.62 16.21 7.43 30.71 28.34 14.27 7.69
Abscisic acid receptor PYR1 3K3K 1PYR1P 0.33 7.89 8.95 3.24 28.54 16.37 4.48
Glycosyl hydrolase + C-terminus 1EDG AT5GHP 0.60 21.12 19.70 20.01 30.25 31.06 19.41
Ubiquitin-like modifier-activating 3T7E ATG7CP 0.33 3.04 7.88 5.56 7.02 3.29 2.64
enzyme ATG7 C-terminal domain
DNA double-strand break 3AV0 MRERAP 0.33 2.00 20.44 5.10 9.34 26.77 4.26
repair protein MRE11 + ATP
Glucose isomerase 2G4J GISRUP 0.56 16.95 46.43 36.75 26.35 78.30 13.82
Complement C3b + Efb-C ... C3BEFP 0.33 4.02 21.70 5.74 ... 2.47 3.44
Xylanase 1REF 1XYNTP 0.31 3.51 3.42 4.13 6.44 1.73 1.20
Pyrococcus furiosus 2E2G 1AHRHP 0.31 5.29 7.51 5.50 6.81 6.14 5.32
decameric product
Ketoreductase-enoylreductase ... ZGDWKP 0.31 2.76 4.43 4.41 5.93 3.92 2.82
didomain
Human Regulator of ... HRCC1P 0.33 9.92 15.68 16.05 9.97 2.72 11.37
Chromosome Condensation

Average 7.20 12.60 10.34 14.92 15.90 5.92

Standard deviation 6.42 11.83 11.24 10.69 22.04 5.39

Median 4.27 7.97 5.30 9.34 5.03 3.90

angle, a Kratky plot of I(q)q2 vs q is shown in Fig. 7. This
presentation of the data emphasizes the shape of the scatter-
ing profiles at larger values of q, and suggests that the B-form
is generally a better representation of the duplex DNA in solu-
tion. One possible explanation for this discrepancy is that the
real structure is somewhere between B and B’-form. Another
possible explanation for the deviation is that uncertainties in
the computed distribution of ions and water in the solution
affect the result.

The important contributions of both ion and water at-
mospheres to the overall scattering profiles of nucleic acids

0 0.2 0.4 0.6 0.8

q (A
-1

)

10000

1e+06

1e+08

1e+10

I S
A

X
S
 (

e2 )

C-DNA
A-DNA
B-DNA χ=12.69
B’-DNA χ=16.61

FIG. 5. SAXS profiles of different DNA structures (built with w3DNA) com-
puted by RISM–SAXS in 0.1 M NaCl. All the curves are offset with the scal-
ing factor of 10 for easy comparison with the experiment (shown in error
bars).

are even more pronounced than solvent effects in protein sys-
tems. To demonstrate the need to properly treat the solvent
in computing SAXS profiles of nucleic acids, Figure 8 shows
the important differences in the SAXS curves that arise from
the interaction of DNA with solvent. The black curve shows
a SAXS profile computed from DNA atoms in vacuo. The
dashed blue curve represents the scattering of the DNA in
water, accounting only for the displacement of water by the
DNA duplex, and assuming that the water molecules around
it do not feel its presence and behave like bulk water. The red
curve includes all contributions from the hydration shell and
ion layer to the DNA scattering, and should be the most re-
alistic calculation. Water consistently perturbs the total curve
up to very high angle. The most significant changes in the
scattering profiles at mid to high angle reflect both the so-
lute topology and the behavior of the hydration layer, and un-
derscore the sensitivity of SAXS to these different aspects of
nucleic acid structure. Thus, as suggested above, discrepan-
cies between computed and measured profiles may be useful
guides for improving the accuracy of calculations.

FIG. 6. B (blue) and B’-form (red) of the 25bp duplex DNA in the solution.
The differences between these two structures are trivial, with the B’-form
having a slightly larger major groove and smaller minor groove. RMSD for
all heavy atom = 0.71 Å, backbone only = 0.86 Å.
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FIG. 7. Kratky plot comparison between B and B’-form of DNA.

B. Scattering behavior near q = 0

The excess form factor (as in Eq. (11)) is the 3D Fourier
transform of the excess electron distribution. At q = 0 it
is nothing but the number of excess electron in the system.
Equation (11) becomes

A (0) = Fsolu (0) + Fgrid (0)

=
∑

i

fi (0) +
∑

k

ZkρkGk,

where Gk is the Kirkwood–Buff integral41

Gk =
∫

[gk(r) − 1]dr =
∫

hk(r)dr (19)

and Nk = ρkGk is the excess (or deficit) of the kth atom or ion
around the solute. Therefore, the intensity at q = 0 is

I (0) = (Zsolu + ZwatNwat + ZcationNcation + ZanionNanion)2

(20)
with Zsolu is the number of electrons in the solute, Zion is the
number in the ion, and Zwat = 10. (Note that at q = 0 the form
factors become real numbers.) Previous work shows that the
number of excess ions extracted from RISM calculations is in
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s(e

2 )

DNA (in vacuo)
DNA + excluded vol
Total

FIG. 8. Decomposition of the total SAXS curve into contributions of the
DNA+excluded volume and solvent.
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FIG. 9. SAXS profiles of B-DNA computed by RISM coupled with KH (red)
and PSE3 (green) closures. The two profiles are offset by a factor of 10 for
easy comparison. The inset zooms out the low angle region near q = 0, and
is plotted without the offset factor.

good agreement with “ion counting” dialysis experiments.26

Therefore, when absolutely calibrated SAXS data are avail-
able (see Methods), the q = 0 value provides an absolute com-
parison between data and simulation. This comparison can be
used to establish the effectiveness of RISM subject to dif-
ferent closures. Figure 9 compares measured and calibrated
SAXS profiles of a 25-bp duplex DNA in 100 mM NaCl
with profiles computed with two closures, KH and PSE3. The
KH curve agrees better with the experiment near q = 0, im-
plying that the total number of excess electrons in the sys-
tem should be closer to those from KH as opposed to PSE3
closure.

Table II reports the number of excess waters and ions
around the 25-bp DNA computed by RISM coupled with
different closures. The neutral atomic form factors are used
in the SAXS calculations, requiring a modification of the
electron number Ne to account for the overall charge of the
DNA: we correct the computed Ne to include the extra elec-
trons accounting for the DNA charge. The number of excess
water is approximately partitioned into contributions from
the excluded volume of the DNA, and the remainder, which
is termed the hydration shell. (Whether a cell belongs to
the excluded volume or hydration shell depends on the dis-
tance d between it and its nearest atom of the solute j. If
d < rj + rwat , where rj is the atomic radii of atom j and

rwat = 1.4 Å is approximately the radius of water molecule
then the cell is within the excluded volume. This is a some-
what arbitrary division, and the results in Table II provide only
a general account of excluded-volume versus hydration shell
effects).

From Eq. (20), an experimental estimate of Nwat can be
extracted if all other terms are known. We assume here that
the number of excess Na+ is the same as that measured for
Rb+, which is 39 ± 2 (see below), which in turn implies that
NCl is −9 ± 2, to achieve electroneutrality. The total number
of electrons in the DNA is 7940 (assuming a net charge of
−48), and I(0) = 1.098 ± 0.070 × 107, extrapolated using
GNOM,42 then the number of excess waters can be computed
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TABLE II. Number of excess water and ions around the 25-bp duplex DNA
from SAXS experiment and RISM calculations with various closures. N

wat

is partitioned into contributions from the excluded volume of the DNA Nexcl
and hydration shell Nshell, as described in the text.

N
wat

Nexcl Nshell Total NNa NCl N
e

= √
I (0)

KH 172 −420 30.5 −17.5 3722
PSE2 196 −396 35.6 −12.4 4104
PSE3 −592 207 −385 37.7 −10.3 4275
PSE4 211 −381 39.1 −8.9 4356
SAXS 107 −485 ± 16 39 ± 2 −9 ± 2 3, 300 ± 100

from Eq. (21),

1.098 × 107 = (ZDNA + 10Nwat + 10NNa + 18NCl)
2

= (7940+10×Nwat +10× 39+ 18 × [−9])2.

(21)

This gives Nwat = −485 ± 16. As shown in Table II, this to-
tal can be approximately viewed as the sum of a deficit of
−592 waters (arising from the excluded volume of the DNA
duplex), and an excess of 107 waters in the hydration shell.
All of the RISM closures appear to overestimate the number
of excess waters in the hydration shell. The KH results are
closest to experiment, with an overestimate of about 2 water
molecules per base-pair.

C. Anomalous SAXS (ASAXS)

The use of ASAXS (see Methods) provides another im-
portant degree of comparison between RISM and measure-
ment. The ASAXS profile is the difference between the SAXS
curves of the same sample but probed at two different beam
energies. One of these energies is close to the absorption edge
of a particular element, in this case Rb+ or Sr2+. The energy
change only influences the scattering of the selected ions, but
the ASAXS signal contains contributions from all terms in-

volving ion scattering, including ion-ion, ion-solute, and ion-
water cross terms. ASAXS experiments are restricted to ele-
ments whose K-edges are readily X-ray accessible. Past work
focused on Rb, Sr, and Co. Lighter and more biologically rel-
evant elements (O, C, N, Na, Mg ...) which have low energy
K-edges are currently inaccessible for ASAXS.

Figure 10 shows a comparison of experimental ASAXS
profiles of Rb+ and Sr2+ around duplex DNA with profiles
computed from RISM–SAXS, shown in the absolute scale.
ASAXS curves of a similar RNA sequence, also in RbCl and
SrCl2, were computed by MD simulation and reported earlier,
however in the relative scale.38 In contrast to comparisons on
the full SAXS profiles of B-DNA, where the PSE-n closures
are not as good as the KH closure in terms of matching with
the experiment near the q = 0 region, the PSE-n closures give
better results when compared with ASAXS data. Earlier work
has shown that PSE-n gives better results than KH for ion dis-
tributions around nucleic acids.26 Since the ASAXS profile is
a complicated sum of ion-solute, ion-water, and ion-ion terms,
it is not surprising that none of the calculated ASAXS curves
from RISM fit the experimental data. Due to weaker site-site
interactions, KH closure places ions farther from the solute,
leading to a more rapid decay of the ASAXS curve than ex-
pected from the PSE2 and PSE3 closures.

This method adds to the growing body of work validating
sophisticated models of ion interactions with nucleic acids, by
introducing absolute calibration. The absence of a scale factor
provides a very stringent test of computational assumptions.
Further analysis, including comparisons to MD simulations,
will be presented elsewhere.

V. CONCLUSIONS

The availability of atomic coordinates of biological
macromolecules is necessary but not sufficient for computing
SAXS profiles for comparison with experiment. In addition
to the underlying solute, SAXS provides important informa-
tion into how the solute modifies the bulk solvent. Here, we
describe a method for computing the solvent contribution that

FIG. 10. ASAXS signals of Rb+ (left) and Sr2+ (right) around the 25-bp duplex DNA computed from RISM–SAXS coupled with different closures, with the
experimental profiles shown as error bars. The insets show the calculated on-edge and off-edge SAXS profiles in which only the atomic scattering factors of the
cations are varied. The ASAXS signal is obtained by subtracting the on-edge from the off-edge.
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uses the 3D-RISM model to describe the solvent environment.
These integral equation models are far from perfect, but pro-
vide estimates of useful accuracy that agree better with ex-
periment for a number of test cases than do the predictions of
simple competing models, and rival the results of much more
expensive molecular dynamics simulations. The 3D-RISM is
particularly attractive for cases where there are both ions and
water in the environment, since there are few existing implicit
models that describe both, and equilibration of ion densities
in MD simulations can be difficult to achieve. As an example,
we report here one of the first simulations of anomalous scat-
tering for mobile counterions near DNA. Results are in good
agreement with the observed profiles, and support the experi-
mental estimates of excess ion parameters reported earlier.

The basic analysis described here uses a single struc-
ture to describe the solute biomolecule. Even relatively rigid
biomolecules may have solute conformational fluctuations
that can affect scattering profiles in the wide-angle region be-
yond q ≈ 0.3Å−1. A very simple approach models these fluc-
tuations in the same way as do atomic displacement param-
eters (or B-factors) in crystallography. This model provides
some insight, but ignores differences between the crystal and
solution environment, and fails to include the effects of cor-
related fluctuations that affect solution scattering but not the
intensities of Bragg peaks in crystallography. Averaging over
snapshots from MD simulations offers one way to investigate
such effects, but more work in this area is needed. We con-
sider here only the “forward” challenge of estimating SAXS
profiles based on an input structure; the “inverse” problem of
constructing a structure or ensemble consistent with a given
profile is more challenging, and is generally problem-specific.
Our computation is fast enough (requiring a few minutes for
the examples considered here) to allow one to average over
many solute configurations, or to use SAXS results (perhaps
in combination with other restraints) to construct ensembles
of configurations consistent with the data.

Analysis of the q = 0 limits, and comparison to exper-
imentally calibrated profiles, allows one to count the num-
bers of excess ions and waters in the vicinity of biomolecules.
These in turn can be used to test the accuracy of computations
(including finding the limitations of the RISM model used
here), and to complement other ion counting experiments.
These counts are related to partial molar volumes and con-
tributions to osmotic pressure, and offer insights into molec-
ular interactions and function. A full analysis of the expected
uncertainties in these estimates is beyond the scope of this
paper, but would include an analysis of experimental calibra-
tion errors and methods to distinguish between ion and wa-
ter contributions. A preliminary example, of duplex DNA in
NaCl/water, suggests that the excess number of waters sur-
rounding the duplex can be estimated with a precision of
1–2 water molecules per base pair, and that the force fields
and RISM models used here tend to overestimate the number
of excess waters. (This tendency only affects the scattering
curves for q < 0.05 Å−1, and generally good results are ob-
tained for higher scattering angles.)

The characterization of the solvent perturbation used here
relies on a thermally–averaged density profile, and appears
to be only appropriate for q < 1.5 Å−1. At wider angles,

fluctuations in the solvent densities (and not just the average
density) become important, and a different type of theory is
needed. (At high angles, errors in the 3D-RISM description
of pure water may also be a factor limiting the application
of this model.) Nevertheless, this range of scattering angles
covers a large fraction of reported scattering profiles, and our
model should be of considerable use. The programs used here
will be incorporated into the AmberTools suite of programs,
available at http://ambermd.org.

VI. EXPERIMENTAL DETAILS

A. DNA sample preparation

To prepare double-stranded DNA molecules for SAXS
measurements, single-stranded molecules (one strand has a
sequence GCATCTGGGCTATAAAAGGGCGTCG and the
other strand is its complement) were purchased from Inte-
grated DNA Technologies (Coralville, IA). The single strands
were annealed using standard procedures used in previous
studies43 and were dialyzed extensively using spin dialysis 10
kDa cutoff columns (Amicon Ultra-0.5 mL, Millipore, Biller-
ica, MA) in buffered salt solutions of either 100 mM NaCl,
100 mM RbCl, or 10 mM SrCl2 with 1 mM Na-MOPS pH
7.0. All reagents were purchased from Sigma-Aldrich (St.
Louis, MO). The concentration of the DNA samples were de-
termined from UV absorbance measurements at 260 nm us-
ing the hypochromicity-corrected extinction coefficient of the
base-paired duplex, εds = 397 558 L mol−1 cm−1.44 To ensure
an accurate measure of concentration, we either performed in-
line UV absorption measurements using a fiber-coupled spec-
trometer (Avaspec, Avantes, Broomfield, CO) during SAXS
experiments or measured the concentration of the sample im-
mediately after SAXS data collection using a standard bench-
top spectrometer (Cary 50, Agilent, Santa Clara, CA).

B. SAXS data collection and processing

DNA SAXS data were taken at the Cornell High Energy
Synchrotron Source (CHESS). For DNA in 100 mM NaCl
solution, the data were taken at the G1 beamline with x-ray
energy of 10.5 keV. To get a large range in scattering angles
(0.008 < q < 0.95 Å−1), the experimental curve was con-
structed by combining two distinct data sets measured at dif-
ferent times, one at low angle (q < 0.26 Å−1) and another at
wider angle. In both cases, the liquid samples were held in an
in-vacuum quartz capillary with 2 mm diameter and 10 μm
thickness (Hampton Research, Aliso Viejo, CA) and oscil-
lated through the beam using a computer-controlled syringe
pump to prevent radiation damage.45 Scattering images were
recorded from both the sample and the buffer background
with a photon-counting area detector (Pilatus 100 K, Dectris,
Baden, Switzerland). For the low-angle region, the sample to
detector distance was 1.7 m and scattering profiles were taken
in four exposures of 60 s each from samples with DNA con-
centration of 0.05 mM. For the wider-angle region, the sample
to detector distance was 0.45 m, the scattering profiles were
taken in 40 exposures of 1s each and the DNA concentra-
tion was 0.44 mM. To account for the variability in the x-ray
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intensity between exposures, the data were normalized us-
ing either the photocurrent from a PIN diode integrated into
the beamstop, for the low angle measurements, or a by mea-
suring the intensity counts going through a semi-transparent
beamstop made of Molybdenum foils (Goodfellow, Coraopo-
lis, PA), for the higher angles.

The ASAXS measurements were done at the CHESS C-
line station as described in our previous work46, 47 with the
following experimental upgrades: a Pilatus 100 K photon-
counting area-detector was used for collecting scattered im-
ages, the liquid samples was placed in a 3 mm diameter quartz
capillary (Hampton Research, Aliso Viejo, CA) and oscillated
during x-ray exposures to prevent radiation damage, a semi-
transparent beamstop consisting of a stack of Molybdenum
foils (Goodfellow, Coraopolis, PA) was mounted inside the
flight-tube and a quartz flow cell with a 0.1-mm path length
(Starna Cells, Atascadero, CA) was placed in-line with the
x-ray capillary to facilitate accurate DNA concentration mea-
surements using a fiber-coupled UV spectrometer (Avantes,
Broomfield, CO). The sample to detector distance was 0.96 m
(0.024 < q < 0.5 Å−1). The ASAXS data shown here are from
0.15 mM DNA samples in either 100 mM RbCl or in 10 mM
SrCl2. To generate ASAXS curves, SAXS profiles were taken
at 2 different energies below the elemental K absorption edge
of Rb and Sr, respectively. For Rb+, the energies used were
15.093 keV (far from edge, off-edge) and 15.191 keV (near
edge, on-edge) and for Sr2 +, we used 15.997 keV (off-edge)
and 16.097 keV (on-edge). Data were taken for DNA samples
and background buffer by cycling between energies every 4
min (4 exposures of 60 s each), with a total exposure time of
32 min. A Rontec 1001 X-flash detector was used to record
the x-rays elastically scattered by the beamstop for normal-
ization of the SAXS profiles.

A silver behenate powder diffraction standard (d-spacing
= 58.376 Å) was used to convert the detector coordinates to
momentum transfer (q = 4πsin θ /λ, where 2θ is the scatter-
ing angle, and λ is the x-ray wavelength). The silver behenate
scattering pattern and the location of the beamstop-attenuated
direct beam (if applicable) determined the location of q = 0
within the detector image. We used azimuthal integration to
turn the image to a one-dimensional scattering profile using
data analysis code written in MATLAB (MathWorks, Natick,
MA). The reported scattered intensity was determined by sub-
tracting the averaged buffer background scattering from the
averaged scattering of the DNA samples. The scattering in-
tensity was calibrated to absolute intensity per molecule (in
units of electron2) as described below.

C. Absolute calibration using water as reference

To facilitate accurate comparison between calculations
and SAXS data, the scattered intensity was placed on an
absolute scale using liquid water as calibrant, as in Ref. 48.
The SAXS pattern of pure double-distilled deionized water
(Barnestead Nanopure, Thermoscientific, Waltham, MA) was
measured by taking SAXS profiles of pure water and subtrac-
tion of a similarly normalized background curve (an empty
clean sample holder). This method accounts for the experi-
mental parameters that affects scattering intensity like size

of the x-ray beam, sample holder thickness and detector per-
formance. The scattered intensity of water is nearly constant
in the experimental q-range and can be extrapolated to the
q → 0 value for the absolute calibration.

The absolute scattered intensity of the sample (in terms
of the macroscopic scattering cross-section, d/d�) is related
to the water value

d(q)

d�

∣∣∣∣
sample

= I (q)sample_norm

I (q → 0)water_norm

d

d�

∣∣∣∣
water

. (22)

Here, I (q)sample_norm is the measured normalized scattering in-
tensity of the DNA sample and I (q → 0)water_norm is the mea-
sured normalized intensity of water extrapolated to q = 0.
We prefer to convert the sample scattering intensity I(q)sample

to the absolute intensity per molecule (in units of electron2),
by dividing with the macromolecular concentration (number
density nsample) and the square of the classical electron radius
r0 = 0.28179 × 10−12 cm per electron

I (q)sample[electron2] = 1

nsampler
2
0

d(q)

d�

∣∣∣∣
sample

= 1

nsampler
2
0

· I (q)sample_norm

I (q → 0)water_norm

d

d�

∣∣∣∣
water

. (23)

The forward x-ray scattering cross-section of a liquid is pro-
portional to the isothermal compressibility

d

d�
= ρ2kBT χT , (24)

where ρ is the scattering length density, and χT is the
(temperature-dependent) isothermal compressibility, which
has been determined accurately for water using speed of
sound measurements.49 For liquid water at 23C, χT = 4.55
× 10−10 Pa−1 and d/d� = 0.0164 cm−1. Therefore in prac-
tical terms, we can calculate the calibrated intensity using

I (q)sample[electron2]

= 1

csample

· 1

NAr2
0

· I (q)sample_norm

I (q → 0)water_norm

d

d�

∣∣∣∣
water

, (25)

where NA is Avogadro’s number and csample is the measured
concentration of the DNA sample.

VII. COMPUTATIONAL DETAILS

We take two proteins – lysozyme and myoglobin – and
a 25-bp duplex DNA as test cases for validating the RISM–
SAXS method. (Additional tests are reported in Table I.) The
coordinates for the proteins are taken from Protein Data Bank
with PDB ID 1WLA and 6LYZ for Mb and Lys, respec-
tively. The server w3DNA40 is used to build the duplex DNA
to B and B’ forms. The DNA sequence is GCATCTGGGC-
TATAAAAGGGCGTCG.

A. RISM calculations

All calculations are performed using the rism1d and
rism3d.snglpnt codes from AmberTools.18 We use
Amber ff12SB force field for describing the DNA and
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proteins. (Since there is no histidine-bound heme group pa-
rameter for Amber force field, we use the cysteine-bound
heme parameter for Cytochrome P450 taken from Shahrokh
et al.50) Monovalent ions (alkali, halide) parameters are taken
from Joung–Cheatham ion model.51 Sr2+ ion is taken from Li
et al. (we here report the IOD set results as we find that there
are no difference between SAXS calculation using these three
sets).52 The water model used in this study is cSPC/E;18 we
also did some calculations on cTIP3P water, but found that
the SAXS profiles are not sensitive such a change.18 First, the
1D-RISM is carried out with only the solvent (water + ion if
any) to obtain the solvent susceptibility χV V

αβ which contains
all the information about the bulk solvent. This will be sub-
sequently used for 3D-RISM to compute the solvent structure
around a solute of choice. Thus, one needs to perform only
one 1D-RISM step, and use the resulting χV V for all sub-
sequent 3D-RISM calculations which are at the same condi-
tion (salt concentration, temperature, pressure ...). The output
from RISM program is g(r) for each atomic sites in solvents
(for instance, Hw and Ow in water). These distribution func-
tions reflect the excess or deficit of each solvent site relative
to bulk concentration around the solute in real space, and can
be directly used to compute SAXS profiles.

The modified direct inversion of the iterative subspace
solver (MDIIS)53 was used to iteratively solve the RISM
equations to a residual tolerance of 10−12 and 10−5 for 1D
and 3D-RISM, respectively, at 298.15 K. For 1D-RISM, the
0.025 Å grid spacing is used with 16 384 and 32 768 grid
points for pure water and 100 mM NaCl solution, respectively.
With more diluted solutions (10 mM SrCl2, for example), the
grid points are doubled until we get the results converged. For
3D-RISM, a 3D grid with 0.5 Å grid spacing is used with the
buffer region of 20 Å for proteins and 40 Å for DNA in 100
mM NaCl and up to 80 Å for 10 mM SrCl2.

For simple and neutral protein in water (such as
lysozyme, myoglobin), the RISM calculation takes 13 s (us-
ing 1.0 Å grid spacing, 20 Å buffer), SAXS calculations take
~5 min (q = 1 Å−1) on a conventional desktop. For complex
system (DNA in NaCl/water), a much bigger and finer box
(0.5 Å grid spacing, buffer 40 Å) is required to obtain good
ion distribution, RISM takes 20 min and SAXS calculations
take an additional ~1 h using 16 CPU cores.

B. Calculation of x-ray scattering

We summarize here the derivation from Park et al.16 to
compute X-ray scattering curve from MD simulations. The
electron density of the system Ã (r) is separated into contri-
bution from the solute plus its hydration shells Ã1 (r), and the
bulk solvent Ã0 (r) that is not in the hydration shells

Ã (r) = Ã1 (r) + Ã0 (r) . (26)

The intensity is the Fourier transform of correlations in this
electron density (where 〈〉 denotes an ensemble average),1

〈|A(q)|2〉 =
∫

[〈Ã0(r)Ã0(r′)〉 + 〈Ã1(r)Ã1(r′)〉

+〈Ã1(r)Ã0(r′)〉 + 〈Ã0(r)Ã1(r′)〉]e−iq.(r−r′)drdr′.

(27)

In the “blank,” we separate B̃ (r) into contribution of the water
droplet B̃1 (r) and the rest B̃0 (r) (where the water droplet is
all the water within the grid where Ã1 (r) is non-zero), and
thus similarly to Eq. (26) we have

B̃(r) = B̃1(r) + B̃0(r) (28)

and an equation for 〈|B(q)|2〉 analogous to Eq. (27).
For the bulk solvent regions, we can write

〈Ã0(r)〉 = 〈B̃0(r)〉, (29)

〈Ã0(r)Ã0(r′)〉 = 〈B̃0(r)B̃0(r′)〉. (30)

Write the cross term as

〈Ã1(r)Ã0(r′)〉 = 〈Ã1(r)〉〈Ã0(r′)〉 + α(r, r′), (31)

where α
(
r, r′) is the correlation between these two points r

and r’. Similarly for pure solvent system〈
B̃1 (r) B̃0

(
r′)〉 = 〈

B̃1 (r)
〉 〈

B̃0

(
r′)〉 + β

(
r, r′) . (32)

With a big enough hydration shell, we can set α
(
r, r′)

= β
(
r, r′), since the solvent in the A0 or B0 region will be

far from the solute and is little perturbed by it.
The intensity is now computed as the difference between

a sample containing the solvent and the corresponding region
in the pure solvent

I (q) = 〈|A(q)|2〉 − 〈|B(q)|2〉. (33)

Substituting Eqs. (27), (31), and (32) into Eq. (33), and
using the fact that α(r, r′) = β(r, r′) yields

I (q) =
∫

[〈Ã1(r)Ã1(r′)〉 − 〈B̃1(r)B̃1(r′)〉

+〈Ã1(r)〉〈Ã0(r′)〉 + 〈Ã0(r)〉〈Ã1(r′)〉
−〈B̃1(r)〉〈B̃0(r′)〉 − 〈B̃0(r)〉〈B1(r′)〉]e−iq(r−r′)drdr′

(34)

or

I (q) = [〈A1(q)A∗
1(q)〉 − 〈B1(q)B∗

1 (q)〉]
+[〈A1(q)〉 − 〈B1(q)〉]〈B∗

0 (q)〉
+〈B0(q)〉[〈A∗

1(q)〉 − 〈B∗
1 (q)〉], (35)

which is Eq. (18) in Park et al.16 From Eq. (28) we have

〈B0(q)〉 = 〈B(q)〉 − 〈B1(q)〉, (36)

where 〈B (q)〉 = ∫ 〈
B̃ (r)

〉
e−iq.rdr is the Fourier transform of

the shape of the entire scattering volume. In MD simulation
and RISM calculation, this volume reaches infinity and thus
〈B (q)〉 = 0 everywhere except at q = 0, where its value is
the number of electrons in that volume. The q = 0 point is
regarded as a singularity. To make our scattering curve con-
tinuous at q = 0, we assume 〈B(0)〉 = 0, too. Hence Eq. (36)
can be rewritten

〈B0(q)〉 = −〈B1(q)〉, (37)
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which is essentially the Babinet’s principle. Substitute that
into Eq. (35) we have

I (q) = [〈A1(q)A∗
1(q)〉 − 〈B1(q)B∗

1 (q)〉]
−[〈A1(q)〉 − 〈B1(q)〉]〈B∗

1 (q)〉
−〈B1(q)〉[〈A∗

1(q)〉 − 〈B∗
1 (q)〉]. (38)

From this we obtain a working formula for the total
intensity

I (q) = [〈A1(q)〉 − 〈B1(q)〉]2 + [〈|A1(q)|2〉 − |〈A1(q)〉|2]

−[〈|B1(q)|2〉 − |〈B1(q)〉|2]. (39)

In RISM, only the ensemble-averaged distribution of wa-
ter around the solute is obtained and there is no information
about the time-dependent fluctuations of A1(q) and B1(q), so
that the second and third terms are not accounted for by the
RISM theory. For RISM–SAXS, we use the following for-
mula:

I (q) = [〈A1(q)〉 − 〈B1(q)〉]2. (40)

1. Effects of density fluctuations

To see the effect of the density fluctuations on the SAXS
curve, Fig. 11 illustrates the effects of ignoring the second and
the third terms, using a MD simulation of Lys. It is obvious
that the density fluctuations do not affect the low angle re-
gion (near q = 0), only moderate and high angle regions. At
high angle (q > 1.5 Å−1), the fluctuation is in the same order
with the first term, even making the intensity negative (near
q = 2 Å−1).

2. Effect of grid fineness

We check the convergence for SAXS computation as a
function of the grid spacing in 3D-RISM (Fig. 12). The scat-
tering profiles at 0.5 and 1 Å grid spacing show negligible
differences, while at 2 Å discrepancies start showing up. Note
that this is not to say that the scattering technique is able to
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FIG. 11. SAXS of lysozyme computed by MD simulation with (red) and
without (black) the fluctuation. The inset shows two curves in linear scale at
high angle.
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FIG. 12. Effect of grid spacing of RISM calculation onto the scattering pro-
file of Lys.

probe the difference down to 2 Å but only show that at least a
1 Å grid spacing is needed for distribution function computed
in 3D-RISM to converge.

3. Effects of thermal disorder

Even in the simplest case where the solute adopts a
known, single and relatively rigid conformation, the scatter-
ing profiles are still affected by small thermal fluctuations of
the solute. Modeling these variations as a Debye–Waller fac-
tor, as in Eq. (12), sometimes improves comparisons between
predicted and experimental scattering profiles.13, 54 As pointed
out by Moore,55 the B-factor is only a rough guide to ther-
mal disorder in solution, at least because B-factors are usually
obtained from crystallography and are not necessarily com-
parable to solution scattering. In addition, correlated thermal
motions (not modeled by Debye–Waller factors) contribute
to scattering in solution. Fortunately, these effects are often
minor, although more study is warranted. Figure 13 shows
the effect of incorporating these effects into the calculation of
Lys profiles via the B-factor as described in Eq. (12). Only
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FIG. 13. Effect of thermal fluctuation onto scattering of Lys. Black and red
lines are scattering curves of Lys computed by RISM–SAXS with and with-
out B-factor included, respectively.
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FIG. 14. Computed scattering profiles for lysozyme comparing the model of
Eq. (15) (red) with a model that distributes the electron density of each water
molecule onto 27 adjacent cubes (black).

the moderate and high angle, but not the low angle region
as expected, are impacted by thermal fluctuation. The low-
est scattering angle at which the thermal fluctuation effect is
significant can be computed from Eq. (12), and is inversely
related to the average B-factor.55

4. Computation of electron densities
in the CUBE method

The RISM model provides the density of each type of
solvent component (hydrogen and oxygen of waters, plus
ions) on a three-dimensional grid surrounding the solute. This
needs to be converted to an electron density representation in
order to compute SAXS profiles. In the simplest model (de-
scribed above), atomic densities at each grid point are simply
multiplied by the number of electrons in each component. In
fact, the distribution of electrons around the nucleus spreads
out beyond a single cube. We performed calculations where
we redistribute the electrons of water over 26 neighboring
cells based on the spatial distribution of an electron around
a single water molecule, and find the SAXS profiles are not
changed up to q = 2.0 Å−1, see Fig. 14. This is expected
since at even high angle region, the resolution in real space is
still not fine enough to look at electron in atom (for example,
q = 2.0 Å−1 corresponds to r ≈ 3 Å).
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